Switch to: References

Add citations

You must login to add citations.
  1. Happy families.A. R. D. Mathias - 1977 - Annals of Mathematical Logic 12 (1):59.
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Iterated perfect-set forcing.James E. Baumgartner & Richard Laver - 1979 - Annals of Mathematical Logic 17 (3):271-288.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Ramsey type properties of ideals.M. Hrušák, D. Meza-Alcántara, E. Thümmel & C. Uzcátegui - 2017 - Annals of Pure and Applied Logic 168 (11):2022-2049.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Selective ultrafilters and homogeneity.Andreas Blass - 1988 - Annals of Pure and Applied Logic 38 (3):215-255.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Ultrafilters over a measurable cardinal.A. Kanamori - 1976 - Annals of Mathematical Logic 10 (3-4):315-356.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Forcing with filters and complete combinatorics.Claude Laflamme - 1989 - Annals of Pure and Applied Logic 42 (2):125-163.
    We study ultrafilters produced by forcing, obtaining different combinatorics and related Rudin-Keisler ordering; in particular we answer a question of Baumgartner and Taylor regarding tensor products of ultrafilters. Adapting a method of Blass and Mathias, we show that in most cases the combinatorics satisfied by the ultrafilters recapture the forcing notion in the Lévy model.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Ultrafilters on ω.James E. Baumgartner - 1995 - Journal of Symbolic Logic 60 (2):624-639.
    We study the I-ultrafilters on ω, where I is a collection of subsets of a set X, usually R or ω 1 . The I-ultrafilters usually contain the P-points, often as a small proper subset. We study relations between I-ultrafilters for various I, and closure of I-ultrafilters under ultrafilter sums. We consider, but do not settle, the question whether I-ultrafilters always exist.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Countable ultraproducts without CH.Michael Canjar - 1988 - Annals of Pure and Applied Logic 37 (1):1-79.
    An important application of ultrafilters is in the ultraproduct construction in model theory. In this paper we study ultraproducts of countable structures, whose universe we assume is ω , using ultrafilters on a countable index set, which we also assume to be ω . Many of the properties of the ultraproduct are in fact inherent properties of the ultrafilter. For example, if we take a sequence of countable linear orders without maximal element, then their ultraproduct will have no maximal element, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Ultrafilters and types on models of arithmetic.L. A. S. Kirby - 1984 - Annals of Pure and Applied Logic 27 (3):215-252.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Unbounded families and the cofinality of the infinite symmetric group.James D. Sharp & Simon Thomas - 1995 - Archive for Mathematical Logic 34 (1):33-45.
    In this paper, we study the relationship between the cofinalityc(Sym(ω)) of the infinite symmetric group and the minimal cardinality $$\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{b} $$ of an unbounded familyF of ω ω.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Partitions and filters.P. Matet - 1986 - Journal of Symbolic Logic 51 (1):12-21.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The intersection of nonstandard models of arithmetic.Andreas Blass - 1972 - Journal of Symbolic Logic 37 (1):103-106.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Mathias and set theory.Akihiro Kanamori - 2016 - Mathematical Logic Quarterly 62 (3):278-294.
    On the occasion of his 70th birthday, the work of Adrian Mathias in set theory is surveyed in its full range and extent.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the structure of Borel ideals in-between the ideals ED and Fin ⊗ Fin in the Katětov order.Pratulananda Das, Rafał Filipów, Szymon Gła̧b & Jacek Tryba - 2021 - Annals of Pure and Applied Logic 172 (8):102976.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ultrafilters which extend measures.Michael Benedikt - 1998 - Journal of Symbolic Logic 63 (2):638-662.
    We study classes of ultrafilters on ω defined by a natural property of the Loeb measure in the Nonstandard Universe corresponding to the ultrafilter. This class, the Property M ultrafilters, is shown to contain all ultrafilters built up by taking iterated products over collections of pairwise nonisomorphic selective ultrafilters. Results on Property M ultrafilters are applied to the construction of extensions of probability measures, and to the study of measurable reductions between ultrafilters.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A few special ordinal ultrafilters.Claude Laflamme - 1996 - Journal of Symbolic Logic 61 (3):920-927.
    We prove various results on the notion of ordinal ultrafilters introduced by J. Baumgartner. In particular, we show that this notion of ultrafilter complexity is independent of the more familiar Rudin-Keisler ordering.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Combinatorics on ideals and forcing.Serge Grigorieff - 1971 - Annals of Mathematical Logic 3 (4):363.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Some filters of partitions.Pierre Matet - 1988 - Journal of Symbolic Logic 53 (2):540-553.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ramsey for R1 ultrafilter mappings and their Dedekind cuts.Timothy Trujillo - 2015 - Mathematical Logic Quarterly 61 (4-5):263-273.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Saturating ultrafilters on N.D. H. Fremlin & P. J. Nyikos - 1989 - Journal of Symbolic Logic 54 (3):708-718.
    We discuss saturating ultrafilters on N, relating them to other types of nonprincipal ultrafilter. (a) There is an (ω,c)-saturating ultrafilter on $\mathbf{N} \operatorname{iff} 2^\lambda \leq \mathfrak{c}$ for every $\lambda and there is no cover of R by fewer than c nowhere dense sets. (b) Assume Martin's axiom. Then, for any cardinal κ, a nonprincipal ultrafilter on N is (ω,κ)-saturating iff it is almost κ-good. In particular, (i) p(κ)-point ultrafilters are (ω,κ)-saturating, and (ii) the set of (ω,κ)-saturating ultrafilters is invariant under (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Universal subgroups of polish groups.Konstantinos A. Beros - 2014 - Journal of Symbolic Logic 79 (4):1148-1183.
    Given a class${\cal C}$of subgroups of a topological groupG, we say that a subgroup$H \in {\cal C}$is auniversal${\cal C}$subgroupofGif every subgroup$K \in {\cal C}$is a continuous homomorphic preimage ofH. Such subgroups may be regarded as complete members of${\cal C}$with respect to a natural preorder on the set of subgroups ofG. We show that for any locally compact Polish groupG, the countable powerGωhas a universalKσsubgroup and a universal compactly generated subgroup. We prove a weaker version of this in the nonlocally compact (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Exactly two and exactly three near-coherence classes.Heike Mildenberger - 2023 - Journal of Mathematical Logic 24 (1).
    We prove that for [Formula: see text] and [Formula: see text] there is a forcing extension with exactly n near-coherence classes of non-principal ultrafilters. We introduce localized versions of Matet forcing and we develop Ramsey spaces of names. The evaluation of some of the new forcings is based on a relative of Hindman’s theorem due to Blass 1987.
    Download  
     
    Export citation  
     
    Bookmark  
  • Small Filter forcing.R. Michael Canjar - 1986 - Journal of Symbolic Logic 51 (3):526-546.
    Download  
     
    Export citation  
     
    Bookmark  
  • Upward directedness of the Rudin-Keisler ordering of p-points.Claude Laflamme - 1990 - Journal of Symbolic Logic 55 (2):449-456.
    Download  
     
    Export citation  
     
    Bookmark  
  • Hierarchies of measure-theoretic ultrafilters.Michael Benedikt - 1999 - Annals of Pure and Applied Logic 97 (1-3):203-219.
    We study relations between measure-theoretic classes of ultrafilters, such as the Property M ultrafilters of [4], with other well-known ultrafilter classes. We define several classes of measure theoretic ultrafilters, of which the Property M ultrafilters are the strongest. We show which containments are provable in ZFC between these measure-theoretic ultrafilters and boolean combinations of well-known ultrafilters such as the selective, semi-selective, and P-point ultrafilters. We also list some of the containment results between measure-theoretic ultrafilters and several other ultrafilter classes, such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Orderings of Types of Countable Arithmetic.K. Potthoff - 1978 - Mathematical Logic Quarterly 24 (7):97-108.
    Download  
     
    Export citation  
     
    Bookmark  
  • Generic existence of interval P-points.Jialiang He, Renling Jin & Shuguo Zhang - 2023 - Archive for Mathematical Logic 62 (5):619-640.
    A P-point ultrafilter over \(\omega \) is called an interval P-point if for every function from \(\omega \) to \(\omega \) there exists a set _A_ in this ultrafilter such that the restriction of the function to _A_ is either a constant function or an interval-to-one function. In this paper we prove the following results. (1) Interval P-points are not isomorphism invariant under \(\textsf{CH}\) or \(\textsf{MA}\). (2) We identify a cardinal invariant \(\textbf{non}^{**}({\mathcal {I}}_{\tiny {\hbox {int}}})\) such that every filter base (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ultrafilters, monotone functions and pseudocompactness.M. Hrušák, M. Sanchis & Á Tamariz-Mascarúa - 2005 - Archive for Mathematical Logic 44 (2):131-157.
    In this article we, given a free ultrafilter p on ω, consider the following classes of ultrafilters:(1) T(p) - the set of ultrafilters Rudin-Keisler equivalent to p,(2) S(p)={q ∈ ω*:∃ f ∈ ω ω , strictly increasing, such that q=f β (p)},(3) I(p) - the set of strong Rudin-Blass predecessors of p,(4) R(p) - the set of ultrafilters equivalent to p in the strong Rudin-Blass order,(5) P RB (p) - the set of Rudin-Blass predecessors of p, and(6) P RK (p) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A characterization of 2-square ultrafilters.Ned I. Rosen - 1983 - Journal of Symbolic Logic 48 (2):409-414.
    The class of 2-square ultrafilters on ω equals the union, for n ≥ 1, of the classes of strictly n Ramsey ultrafilters on ω.
    Download  
     
    Export citation  
     
    Bookmark