Switch to: References

Add citations

You must login to add citations.
  1. Open problems in the philosophy of information.Luciano Floridi - 2004 - Metaphilosophy 35 (4):554-582.
    The philosophy of information (PI) is a new area of research with its own field of investigation and methodology. This article, based on the Herbert A. Simon Lecture of Computing and Philosophy I gave at Carnegie Mellon University in 2001, analyses the eighteen principal open problems in PI. Section 1 introduces the analysis by outlining Herbert Simon's approach to PI. Section 2 discusses some methodological considerations about what counts as a good philosophical problem. The discussion centers on Hilbert's famous analysis (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Symbol grounding in computational systems: A paradox of intentions.Vincent C. Müller - 2009 - Minds and Machines 19 (4):529-541.
    The paper presents a paradoxical feature of computational systems that suggests that computationalism cannot explain symbol grounding. If the mind is a digital computer, as computationalism claims, then it can be computing either over meaningful symbols or over meaningless symbols. If it is computing over meaningful symbols its functioning presupposes the existence of meaningful symbols in the system, i.e. it implies semantic nativism. If the mind is computing over meaningless symbols, no intentional cognitive processes are available prior to symbol grounding. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)The matrix as metaphysics.David J. Chalmers - 2005 - In Christopher Grau (ed.), Philosophers Explore the Matrix. Oxford University Press. pp. 132.
    The Matrix presents a version of an old philosophical fable: the brain in a vat. A disembodied brain is floating in a vat, inside a scientist’s laboratory. The scientist has arranged that the brain will be stimulated with the same sort of inputs that a normal embodied brain receives. To do this, the brain is connected to a giant computer simulation of a world. The simulation determines which inputs the brain receives. When the brain produces outputs, these are fed back (...)
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • When physical systems realize functions.Matthias Scheutz - 1999 - Minds and Machines 9 (2):161-196.
    After briefly discussing the relevance of the notions computation and implementation for cognitive science, I summarize some of the problems that have been found in their most common interpretations. In particular, I argue that standard notions of computation together with a state-to-state correspondence view of implementation cannot overcome difficulties posed by Putnam's Realization Theorem and that, therefore, a different approach to implementation is required. The notion realization of a function, developed out of physical theories, is then introduced as a replacement (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • On implementing a computation.David J. Chalmers - 1994 - Minds and Machines 4 (4):391-402.
    To clarify the notion of computation and its role in cognitive science, we need an account of implementation, the nexus between abstract computations and physical systems. I provide such an account, based on the idea that a physical system implements a computation if the causal structure of the system mirrors the formal structure of the computation. The account is developed for the class of combinatorial-state automata, but is sufficiently general to cover all other discrete computational formalisms. The implementation relation is (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • The computational theory of mind.Steven Horst - 2005 - Stanford Encyclopedia of Philosophy.
    Over the past thirty years, it is been common to hear the mind likened to a digital computer. This essay is concerned with a particular philosophical view that holds that the mind literally is a digital computer (in a specific sense of “computer” to be developed), and that thought literally is a kind of computation. This view—which will be called the “Computational Theory of Mind” (CTM)—is thus to be distinguished from other and broader attempts to connect the mind with computation, (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Let's dance! The equivocation in Chalmers' dancing qualia argument.B. van Heuveln, Eric Dietrich & M. Oshima - 1998 - Minds and Machines 8 (2):237-249.
    David Chalmers' dancing qualia argument is intended to show that phenomenal experiences, or qualia, are organizational invariants. The dancing qualia argument is a reductio ad absurdum, attempting to demonstrate that holding an alternative position, such as the famous inverted spectrum argument, leads one to an implausible position about the relation between consciousness and cognition. In this paper, we argue that Chalmers' dancing qualia argument fails to establish the plausibility of qualia being organizational invariants. Even stronger, we will argue that the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Transhumanismo, pregunta a la naturaleza humana.Giovanni Fernández Valdés - 2020 - Perseitas 9:389-421.
    El transhumanismo como filosofía e ideología tecnologicista tiene cada vez más adeptos y se coloca en los ámbitos académicos como una posición positiva, posible y deseable. Su implementación aparece solapada en una vida cotidiana que depende, como nunca antes, de los avances tecnológicos. La posición que manejaremos es que esta ideología, que sobredimensiona el papel de la tecnología en la sociedad, tiene una visión limitada respecto con los conflictos éticos, económicos y sociales que dimanan de sus presupuestos. El problema no (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Challenges of Artificial Judicial Decision-Making for Liberal Democracy.Christoph Winter - 2022 - In P. Bystranowski, Bartosz Janik & M. Prochnicki (eds.), Judicial Decision-Making: Integrating Empirical and Theoretical Perspectives. Springer Nature. pp. 179-204.
    The application of artificial intelligence (AI) to judicial decision-making has already begun in many jurisdictions around the world. While AI seems to promise greater fairness, access to justice, and legal certainty, issues of discrimination and transparency have emerged and put liberal democratic principles under pressure, most notably in the context of bail decisions. Despite this, there has been no systematic analysis of the risks to liberal democratic values from implementing AI into judicial decision-making. This article sets out to fill this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Discussion on the Relationship between Computation, Information, Cognition, and Their Embodiment.Gordana Dodig-Crnkovic & Marcin Miłkowski - 2023 - Entropy 25 (2):310.
    Three special issues of Entropy journal have been dedicated to the topics of “InformationProcessing and Embodied, Embedded, Enactive Cognition”. They addressed morphological computing, cognitive agency, and the evolution of cognition. The contributions show the diversity of views present in the research community on the topic of computation and its relation to cognition. This paper is an attempt to elucidate current debates on computation that are central to cognitive science. It is written in the form of a dialog between two authors (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Artificial consciousness: a perspective from the free energy principle.Wanja Wiese - 2024 - Philosophical Studies 181:1947–1970.
    Does the assumption of a weak form of computational functionalism, according to which the right form of neural computation is sufficient for consciousness, entail that a digital computational simulation of such neural computations is conscious? Or must this computational simulation be implemented in the right way, in order to replicate consciousness? From the perspective of Karl Friston’s free energy principle, self-organising systems (such as living organisms) share a set of properties that could be realised in artificial systems, but are not (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)How Is Perception Tractable?Tyler Brooke-Wilson - forthcoming - The Philosophical Review.
    Perception solves computationally demanding problems at lightning fast speed. It recovers sophisticated representations of the world from degraded inputs, often in a matter of milliseconds. Any theory of perception must be able to explain how this is possible; in other words, it must be able to explain perception's computational tractability. One of the few attempts to move toward such an explanation has been the information encapsulation hypothesis, which posits that perception can be fast because it keeps computational costs low by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Two Different Kinds of Computational Indeterminacy.Philippos Papayannopoulos, Nir Fresco & Oron Shagrir - 2022 - The Monist 105 (2):229-246.
    It is often indeterminate what function a given computational system computes. This phenomenon has been referred to as “computational indeterminacy” or “multiplicity of computations.” In this paper, we argue that what has typically been considered and referred to as the challenge of computational indeterminacy in fact subsumes two distinct phenomena, which are typically bundled together and should be teased apart. One kind of indeterminacy concerns a functional characterization of the system’s relevant behavior. Another kind concerns the manner in which the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The multiple-computations theorem and the physics of singling out a computation.Orly Shenker & Meir Hemmo - 2022 - The Monist 105 (1):175-193.
    The problem of multiple-computations discovered by Hilary Putnam presents a deep difficulty for functionalism (of all sorts, computational and causal). We describe in out- line why Putnam’s result, and likewise the more restricted result we call the Multiple- Computations Theorem, are in fact theorems of statistical mechanics. We show why the mere interaction of a computing system with its environment cannot single out a computation as the preferred one amongst the many computations implemented by the system. We explain why nonreductive (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The problem of artificial qualia.Wael Basille - 2021 - Dissertation, Sorbonne Université
    Is it possible to build a conscious machine, an artifact that has qualitative experiences such as feeling pain, seeing the redness of a flower or enjoying the taste of coffee ? What makes such experiences conscious is their phenomenal character: it is like something to have such experiences. In contemporary philosophy of mind, the question of the qualitative aspect of conscious experiences is often addressed in terms of qualia. In a pre-theoretical and intuitive sense, qualia refer to the phenomenal character (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Cognitive Phenomenology Argument for Disembodied AI Consciousness.Cody Turner - 2020 - In Steven S. Gouveia (ed.), The Age of Artificial Intelligence: An Exploration. Vernon Press. pp. 111-132.
    In this chapter I offer two novel arguments for what I call strong primitivism about cognitive phenomenology, the thesis that there exists a phenomenology of cognition that is neither reducible to, nor dependent upon, sensory phenomenology. I then contend that strong primitivism implies that phenomenal consciousness does not require sensory processing. This latter contention has implications for the philosophy of artificial intelligence. For if sensory processing is not a necessary condition for phenomenal consciousness, then it plausibly follows that AI consciousness (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Debate: What is Personhood in the Age of AI?David J. Gunkel & Jordan Joseph Wales - 2021 - AI and Society 36 (2):473–486.
    In a friendly interdisciplinary debate, we interrogate from several vantage points the question of “personhood” in light of contemporary and near-future forms of social AI. David J. Gunkel approaches the matter from a philosophical and legal standpoint, while Jordan Wales offers reflections theological and psychological. Attending to metaphysical, moral, social, and legal understandings of personhood, we ask about the position of apparently personal artificial intelligences in our society and individual lives. Re-examining the “person” and questioning prominent construals of that category, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Causation and Information: Where Is Biological Meaning to Be Found?Mark Pharoah - 2020 - Biosemiotics 13 (3):309-326.
    The term ‘information’ is used extensively in biology, cognitive science and the philosophy of consciousness in relation to the concepts of ‘meaning’ and ‘causation’. While ‘information’ is a term that serves a useful purpose in specific disciplines, there is much to the concept that is problematic. Part 1 is a critique of the stance that information is an independently existing entity. On this view, and in biological contexts, systems transmit, acquire, assimilate, decode and manipulate it, and in so doing, generate (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Rethinking Turing’s Test and the Philosophical Implications.Diane Proudfoot - 2020 - Minds and Machines 30 (4):487-512.
    In the 70 years since Alan Turing’s ‘Computing Machinery and Intelligence’ appeared in Mind, there have been two widely-accepted interpretations of the Turing test: the canonical behaviourist interpretation and the rival inductive or epistemic interpretation. These readings are based on Turing’s Mind paper; few seem aware that Turing described two other versions of the imitation game. I have argued that both readings are inconsistent with Turing’s 1948 and 1952 statements about intelligence, and fail to explain the design of his game. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Psychoneural Isomorphism: From Metaphysics to Robustness.Alfredo Vernazzani - 2020 - In Fabrizio Calzavarini & Marco Viola (eds.), Neural Mechanisms: New Challenges in the Philosophy of Neuroscience. Springer.
    At the beginning of the 20th century, Gestalt psychologists put forward the concept of psychoneural isomorphism, which was meant to replace Fechner’s obscure notion of psychophysical parallelism and provide a heuristics that may facilitate the search for the neural correlates of the mind. However, the concept has generated much confusion in the debate, and today its role is still unclear. In this contribution, I will attempt a little conceptual spadework in clarifying the concept of psychoneural isomorphism, focusing exclusively on conscious (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Triviality Arguments Reconsidered.Paul Schweizer - 2019 - Minds and Machines 29 (2):287-308.
    Opponents of the computational theory of mind have held that the theory is devoid of explanatory content, since whatever computational procedures are said to account for our cognitive attributes will also be realized by a host of other ‘deviant’ physical systems, such as buckets of water and possibly even stones. Such ‘triviality’ claims rely on a simple mapping account of physical implementation. Hence defenders of CTM traditionally attempt to block the trivialization critique by advocating additional constraints on the implementation relation. (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A competence framework for artificial intelligence research.Lisa Miracchi - 2019 - Philosophical Psychology 32 (5):588-633.
    ABSTRACTWhile over the last few decades AI research has largely focused on building tools and applications, recent technological developments have prompted a resurgence of interest in building a genuinely intelligent artificial agent – one that has a mind in the same sense that humans and animals do. In this paper, I offer a theoretical and methodological framework for this project of investigating “artificial minded intelligence” that can help to unify existing approaches and provide new avenues for research. I first outline (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • In defense of the semantic view of computation.Oron Shagrir - 2020 - Synthese 197 (9):4083-4108.
    The semantic view of computation is the claim that semantic properties play an essential role in the individuation of physical computing systems such as laptops and brains. The main argument for the semantic view rests on the fact that some physical systems simultaneously implement different automata at the same time, in the same space, and even in the very same physical properties. Recently, several authors have challenged this argument. They accept the premise of simultaneous implementation but reject the semantic conclusion. (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Objections to Computationalism: A Survey.Marcin Miłkowski - 2018 - Roczniki Filozoficzne 66 (3):57-75.
    In this paper, the Author reviewed the typical objections against the claim that brains are computers, or, to be more precise, information-processing mechanisms. By showing that practically all the popular objections are based on uncharitable interpretations of the claim, he argues that the claim is likely to be true, relevant to contemporary cognitive science, and non-trivial.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Cognitive Basis of Computation: Putting Computation in Its Place.Daniel D. Hutto, Erik Myin, Anco Peeters & Farid Zahnoun - 2018 - In Mark Sprevak & Matteo Colombo (eds.), The Routledge Handbook of the Computational Mind. Routledge. pp. 272-282.
    The mainstream view in cognitive science is that computation lies at the basis of and explains cognition. Our analysis reveals that there is no compelling evidence or argument for thinking that brains compute. It makes the case for inverting the explanatory order proposed by the computational basis of cognition thesis. We give reasons to reverse the polarity of standard thinking on this topic, and ask how it is possible that computation, natural and artificial, might be based on cognition and not (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Are There Teleological Functions to Compute?Dimitri Coelho Mollo - 2019 - Philosophy of Science 86 (3):431-452.
    I analyze a tension at the core of the mechanistic view of computation generated by its joint commitment to the medium independence of computational vehicles and to computational systems possessing teleological functions to compute. While computation is individuated in medium-independent terms, teleology is sensitive to the constitutive physical properties of vehicles. This tension spells trouble for the mechanistic view, suggesting that there can be no teleological functions to compute. I argue that, once considerations about the relevant function-bestowing factors for computational (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Idealist Origins: 1920s and Before.Martin Davies & Stein Helgeby - 2014 - In Graham Oppy & Nick Trakakis (eds.), History of Philosophy in Australia and New Zealand. Dordrecht: Springer. pp. 15-54.
    This paper explores early Australasian philosophy in some detail. Two approaches have dominated Western philosophy in Australia: idealism and materialism. Idealism was prevalent between the 1880s and the 1930s, but dissipated thereafter. Idealism in Australia often reflected Kantian themes, but it also reflected the revival of interest in Hegel through the work of ‘absolute idealists’ such as T. H. Green, F. H. Bradley, and Henry Jones. A number of the early New Zealand philosophers were also educated in the idealist tradition (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What is a Computer? A Survey.William J. Rapaport - 2018 - Minds and Machines 28 (3):385-426.
    A critical survey of some attempts to define ‘computer’, beginning with some informal ones, then critically evaluating those of three philosophers, and concluding with an examination of whether the brain and the universe are computers.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The False Dichotomy between Causal Realization and Semantic Computation.Marcin Miłkowski - 2017 - Hybris. Internetowy Magazyn Filozoficzny 38:1-21.
    In this paper, I show how semantic factors constrain the understanding of the computational phenomena to be explained so that they help build better mechanistic models. In particular, understanding what cognitive systems may refer to is important in building better models of cognitive processes. For that purpose, a recent study of some phenomena in rats that are capable of ‘entertaining’ future paths (Pfeiffer and Foster 2013) is analyzed. The case shows that the mechanistic account of physical computation may be complemented (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Why think that the brain is not a computer?Marcin Miłkowski - 2016 - APA Newsletter on Philosophy and Computers 16 (2):22-28.
    In this paper, I review the objections against the claim that brains are computers, or, to be precise, information-processing mechanisms. By showing that practically all the popular objections are either based on uncharitable interpretation of the claim, or simply wrong, I argue that the claim is likely to be true, relevant to contemporary cognitive (neuro)science, and non-trivial.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Theory of Practical Meaning.Carlotta Pavese - 2017 - Philosophical Topics 45 (2):65-96.
    This essay is divided into two parts. In the first part (§2), I introduce the idea of practical meaning by looking at a certain kind of procedural systems — the motor system — that play a central role in computational explanations of motor behavior. I argue that in order to give a satisfactory account of the content of the representations computed by motor systems (motor commands), we need to appeal to a distinctively practical kind of meaning. Defending the explanatory relevance (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Computation and Multiple Realizability.Marcin Miłkowski - 2016 - In Vincent C. Müller (ed.), Fundamental Issues of Artificial Intelligence. Cham: Springer. pp. 29-41.
    Multiple realizability (MR) is traditionally conceived of as the feature of computational systems, and has been used to argue for irreducibility of higher-level theories. I will show that there are several ways a computational system may be seen to display MR. These ways correspond to (at least) five ways one can conceive of the function of the physical computational system. However, they do not match common intuitions about MR. I show that MR is deeply interest-related, and for this reason, difficult (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Tractable Cognition Thesis.Iris Van Rooij - 2008 - Cognitive Science 32 (6):939-984.
    The recognition that human minds/brains are finite systems with limited resources for computation has led some researchers to advance the Tractable Cognition thesis: Human cognitive capacities are constrained by computational tractability. This thesis, if true, serves cognitive psychology by constraining the space of computational‐level theories of cognition. To utilize this constraint, a precise and workable definition of “computational tractability” is needed. Following computer science tradition, many cognitive scientists and psychologists define computational tractability as polynomial‐time computability, leading to the P‐Cognition thesis. (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Computational Mechanisms and Models of Computation.Marcin Miłkowski - 2014 - Philosophia Scientiae 18:215-228.
    In most accounts of realization of computational processes by physical mechanisms, it is presupposed that there is one-to-one correspondence between the causally active states of the physical process and the states of the computation. Yet such proposals either stipulate that only one model of computation is implemented, or they do not reflect upon the variety of models that could be implemented physically. In this paper, I claim that mechanistic accounts of computation should allow for a broad variation of models of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Bayesian Sensorimotor Psychology.Michael Rescorla - 2016 - Mind and Language 31 (1):3-36.
    Sensorimotor psychology studies the mental processes that control goal-directed bodily motion. Recently, sensorimotor psychologists have provided empirically successful Bayesian models of motor control. These models describe how the motor system uses sensory input to select motor commands that promote goals set by high-level cognition. I highlight the impressive explanatory benefits offered by Bayesian models of motor control. I argue that our current best models assign explanatory centrality to a robust notion of mental representation. I deploy my analysis to defend intentional (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • A dialogue concerning two world systems: Info-computational vs. mechanistic.Gordana Dodig-Crnkovic & Vincent C. Müller - 2011 - In Gordana Dodig Crnkovic & Mark Burgin (eds.), Information and computation: Essays on scientific and philosophical understanding of foundations of information and computation. World Scientific. pp. 149-184.
    The dialogue develops arguments for and against a broad new world system - info-computationalist naturalism - that is supposed to overcome the traditional mechanistic view. It would make the older mechanistic view into a special case of the new general info-computationalist framework (rather like Euclidian geometry remains valid inside a broader notion of geometry). We primarily discuss what the info-computational paradigm would mean, especially its pancomputationalist component. This includes the requirements for a the new generalized notion of computing that would (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • 20 years after The Embodied Mind - why is cognitivism alive and kicking?Vincent C. Müller - 2013 - In Blay Whitby & Joel Parthmore (eds.), Re-Conceptualizing Mental "Illness": The View from Enactivist Philosophy and Cognitive Science - AISB Convention 2013. AISB. pp. 47-49.
    I want to suggest that the major influence of classical arguments for embodiment like "The Embodied Mind" by Varela, Thomson & Rosch (1991) has been a changing of positions rather than a refutation: Cognitivism has found ways to retreat and regroup at positions that have better fortification, especially when it concerns theses about artificial intelligence or artificial cognitive systems. For example: a) Agent-based cognitivism' that understands humans as taking in representations of the world, doing rule-based processing and then acting on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Pancomputationalism: Theory or metaphor?Vincent C. Müller - 2014 - In Ruth Hagenbruger & Uwe V. Riss (eds.), Philosophy, computing and information science. Pickering & Chattoo. pp. 213-221.
    The theory that all processes in the universe are computational is attractive in its promise to provide an understandable theory of everything. I want to suggest here that this pancomputationalism is not sufficiently clear on which problem it is trying to solve, and how. I propose two interpretations of pancomputationalism as a theory: I) the world is a computer and II) the world can be described as a computer. The first implies a thesis of supervenience of the physical over computation (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Yet Another Objection to Fading and Dancing Qualia.Nir Aides -
    In this paper I present objections to the Fading Qualia and Dancing Qualia thought experiments, which David Chalmers uses to argue that functional organization fully determines conscious experience.
    Download  
     
    Export citation  
     
    Bookmark  
  • Artificial moral agents are infeasible with foreseeable technologies.Patrick Chisan Hew - 2014 - Ethics and Information Technology 16 (3):197-206.
    For an artificial agent to be morally praiseworthy, its rules for behaviour and the mechanisms for supplying those rules must not be supplied entirely by external humans. Such systems are a substantial departure from current technologies and theory, and are a low prospect. With foreseeable technologies, an artificial agent will carry zero responsibility for its behavior and humans will retain full responsibility.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Philosophy of mind and cognitive science since 1980.Elizabeth Schier & John Sutton - 2014 - In Graham Oppy & Nick Trakakis (eds.), History of Philosophy in Australia and New Zealand. Dordrecht: Springer.
    If Australasian philosophers constitute the kind of group to which a collective identity or broadly shared self-image can plausibly be ascribed, the celebrated history of Australian materialism rightly lies close to its heart. Jack Smart’s chapter in this volume, along with an outstanding series of briefer essays in A Companion to Philosophy in Australia and New Zealand (Forrest 2010; Gold 2010; Koksvik 2010; Lycan 2010; Matthews 2010; Nagasawa 2010; Opie 2010; Stoljar 2010a), effectively describe the naturalistic realism of Australian philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Does Computation Reveal Machine Cognition?Prakash Mondal - 2014 - Biosemiotics 7 (1):97-110.
    This paper seeks to understand machine cognition. The nature of machine cognition has been shrouded in incomprehensibility. We have often encountered familiar arguments in cognitive science that human cognition is still faintly understood. This paper will argue that machine cognition is far less understood than even human cognition despite the fact that a lot about computer architecture and computational operations is known. Even if there have been putative claims about the transparency of the notion of machine computations, these claims do (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A theory of computational implementation.Michael Rescorla - 2014 - Synthese 191 (6):1277-1307.
    I articulate and defend a new theory of what it is for a physical system to implement an abstract computational model. According to my descriptivist theory, a physical system implements a computational model just in case the model accurately describes the system. Specifically, the system must reliably transit between computational states in accord with mechanical instructions encoded by the model. I contrast my theory with an influential approach to computational implementation espoused by Chalmers, Putnam, and others. I deploy my theory (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Metaphysics and Computational Cognitive Science: Let's Not Let the Tail Wag the Dog.Frances Egan - 2012 - Journal of Cognitive Science 13:39-49.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Generalized quantifiers.Dag Westerståhl - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Does a rock implement every finite-state automaton?David J. Chalmers - 1996 - Synthese 108 (3):309-33.
    Hilary Putnam has argued that computational functionalism cannot serve as a foundation for the study of the mind, as every ordinary open physical system implements every finite-state automaton. I argue that Putnam's argument fails, but that it points out the need for a better understanding of the bridge between the theory of computation and the theory of physical systems: the relation of implementation. It also raises questions about the class of automata that can serve as a basis for understanding the (...)
    Download  
     
    Export citation  
     
    Bookmark   148 citations  
  • A cognitive analysis of the chinese room argument.Norman Y. Teng - 2000 - Philosophical Psychology 13 (3):313-24.
    Searle's Chinese room argument is analyzed from a cognitive point of view. The analysis is based on a newly developed model of conceptual integration, the many space model proposed by Fauconnier and Turner. The main point of the analysis is that the central inference constructed in the Chinese room scenario is a result of a dynamic, cognitive activity of conceptual blending, with metaphor defining the basic features of the blending. Two important consequences follow: (1) Searle's recent contention that syntax is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Computing in the nick of time.J. Brendan Ritchie & Colin Klein - 2023 - Ratio 36 (3):169-179.
    The medium‐independence of computational descriptions has shaped common conceptions of computational explanation. So long as our goal is to explain how a system successfully carries out its computations, then we only need to describe the abstract series of operations that achieve the desired input–output mapping, however they may be implemented. It is argued that this abstract conception of computational explanation cannot be applied to so‐called real‐time computing systems, in which meeting temporal deadlines imposed by the systems with which a device (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The “Slicing Problem” for Computational Theories of Consciousness.Chris Percy & Andrés Gómez-Emilsson - 2022 - Open Philosophy 5 (1):718-736.
    The “Slicing Problem” is a thought experiment that raises questions for substrate-neutral computational theories of consciousness, including those that specify a certain causal structure for the computation like Integrated Information Theory. The thought experiment uses water-based logic gates to construct a computer in a way that permits cleanly slicing each gate and connection in half, creating two identical computers each instantiating the same computation. The slicing can be reversed and repeated via an on/off switch, without changing the amount of matter (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Computational Individuation.Fiona T. Doherty - manuscript
    I show that the indeterminacy problem for computational structuralists is in fact far more problematic than even the harshest critic of structuralism has realised; it is not a bullet which can be bitten by structuralists as previously thought. Roughly, this is because the structural indeterminacy of logic-gates such as AND/OR is caused by the structural identity of the binary computational digits 0/1 themselves. I provide a proof that pure computational structuralism is untenable because structural indeterminacy entails absurd consequences - namely, (...)
    Download  
     
    Export citation  
     
    Bookmark