Switch to: References

Citations of:

Frege's philosophy of mathematics

Cambridge: Harvard University Press (1995)

Add citations

You must login to add citations.
  1. Formal Arithmetic Before Grundgesetze.Richard Kimberly Heck - 2019 - In Philip A. Ebert & Marcus Rossberg (eds.), Essays on Frege's Basic Laws of Arithmetic. Oxford: Oxford University Press. pp. 497-537.
    A speculative investigation of how Frege's logical views change between Begriffsschrift and Grundgesetze and how this might have affected the formal development of logicism.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logicism, Interpretability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Review of Symbolic Logic 7 (1):84-119.
    A crucial part of the contemporary interest in logicism in the philosophy of mathematics resides in its idea that arithmetical knowledge may be based on logical knowledge. Here an implementation of this idea is considered that holds that knowledge of arithmetical principles may be based on two things: (i) knowledge of logical principles and (ii) knowledge that the arithmetical principles are representable in the logical principles. The notions of representation considered here are related to theory-based and structure-based notions of representation (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Frege, Dedekind, and the Origins of Logicism.Erich H. Reck - 2013 - History and Philosophy of Logic 34 (3):242-265.
    This paper has a two-fold objective: to provide a balanced, multi-faceted account of the origins of logicism; to rehabilitate Richard Dedekind as a main logicist. Logicism should be seen as more deeply rooted in the development of modern mathematics than typically assumed, and this becomes evident by reconsidering Dedekind's writings in relation to Frege's. Especially in its Dedekindian and Fregean versions, logicism constitutes the culmination of the rise of ?pure mathematics? in the nineteenth century; and this rise brought with it (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Is Intuition Based On Understanding?[I thank Jo].Elijah Chudnoff - 2013 - Philosophy and Phenomenological Research 86 (1):42-67.
    According to the most popular non-skeptical views about intuition, intuitions justify beliefs because they are based on understanding. More precisely: if intuiting that p justifies you in believing that p it does so because your intuition is based on your understanding of the proposition that p. The aim of this paper is to raise some challenges for accounts of intuitive justification along these lines. I pursue this project from a non-skeptical perspective. I argue that there are cases in which intuiting (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Filosofia da Linguagem - uma introdução.Sofia Miguens - 2007 - Porto: Universidade do Porto. Faculdade de Letras.
    O presente manual tem como intenção constituir um guia para uma disciplina introdutória de filosofia da linguagem. Foi elaborado a partir da leccionação da disciplina de Filosofia da Linguagem I na Faculdade de Letras da Universidade do Porto desde 2001. A disciplina de Filosofia da Linguagem I ocupa um semestre lectivo e proporciona aos estudantes o primeiro contacto sistemático com a área da filosofia da linguagem. Pretende-se que este manual ofereça aos estudantes os instrumentos necessários não apenas para acompanhar uma (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege's theorem and his logicism.Hirotoshi Tabata - 2000 - History and Philosophy of Logic 21 (4):265-295.
    As is well known, Frege gave an explicit definition of number (belonging to some concept) in ?68 of his Die Grundlagen der Arithmetik.
    Download  
     
    Export citation  
     
    Bookmark  
  • Logicism Revisited.Otávio Bueno - 2001 - Principia 5 (1-2):99-124.
    In this paper, I develop a new defense of logicism: one that combines logicism and nominalism. First, I defend the logicist approach from recent criticisms; in particular from the charge that a cruciai principie in the logicist reconstruction of arithmetic, Hume's Principle, is not analytic. In order to do that, I argue, it is crucial to understand the overall logicist approach as a nominalist view. I then indicate a way of extending the nominalist logicist approach beyond arithmetic. Finally, I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Natural number concepts: No derivation without formalization.Paul Pietroski & Jeffrey Lidz - 2008 - Behavioral and Brain Sciences 31 (6):666-667.
    The conceptual building blocks suggested by developmental psychologists may yet play a role in how the human learner arrives at an understanding of natural number. The proposal of Rips et al. faces a challenge, yet to be met, faced by all developmental proposals: to describe the logical space in which learners ever acquire new concepts.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Logical constants.John MacFarlane - 2008 - Mind.
    Logic is usually thought to concern itself only with features that sentences and arguments possess in virtue of their logical structures or forms. The logical form of a sentence or argument is determined by its syntactic or semantic structure and by the placement of certain expressions called “logical constants.”[1] Thus, for example, the sentences Every boy loves some girl. and Some boy loves every girl. are thought to differ in logical form, even though they share a common syntactic and semantic (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • On finite hume.Fraser Macbride - 2000 - Philosophia Mathematica 8 (2):150-159.
    Neo-Fregeanism contends that knowledge of arithmetic may be acquired by second-order logical reflection upon Hume's principle. Heck argues that Hume's principle doesn't inform ordinary arithmetical reasoning and so knowledge derived from it cannot be genuinely arithmetical. To suppose otherwise, Heck claims, is to fail to comprehend the magnitude of Cantor's conceptual contribution to mathematics. Heck recommends that finite Hume's principle be employed instead to generate arithmetical knowledge. But a better understanding of Cantor's contribution is achieved if it is supposed that (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Russell's Unknown Logicism: A Study in the History and Philosophy of Mathematics.Sébastien Gandon - 2012 - Houndmills, England and New York: Palgrave-Macmillan.
    In this excellent book Sebastien Gandon focuses mainly on Russell's two major texts, Principa Mathematica and Principle of Mathematics, meticulously unpicking the details of these texts and bringing a new interpretation of both the mathematical and the philosophical content. Winner of The Bertrand Russell Society Book Award 2013.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Frege's Notations: What They Are and How They Mean.Gregory Landini - 2011 - London and Basingstoke: Palgrave-Macmillan.
    Gregory Landini offers a detailed historical account of Frege's notations and the philosophical views that led Frege from Begriffssscrhrift to his mature work Grundgesetze, addressing controversial issues that surround the notations.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Frege's Principle.Richard Heck - 1995 - In Jaakko Hintikka (ed.), From Dedekind to Gödel: Essays on the Development of the Foundations of Mathematics. Kluwer Academic Publishers.
    This paper explores the relationship between Hume's Prinicple and Basic Law V, investigating the question whether we really do need to suppose that, already in Die Grundlagen, Frege intended that HP should be justified by its derivation from Law V.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Notions of Invariance for Abstraction Principles.G. A. Antonelli - 2010 - Philosophia Mathematica 18 (3):276-292.
    The logical status of abstraction principles, and especially Hume’s Principle, has been long debated, but the best currently availeble tool for explicating a notion’s logical character—permutation invariance—has not received a lot of attention in this debate. This paper aims to fill this gap. After characterizing abstraction principles as particular mappings from the subsets of a domain into that domain and exploring some of their properties, the paper introduces several distinct notions of permutation invariance for such principles, assessing the philosophical significance (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • On Fundamental Differences between Dependent and Independent Meanings.Claire Ortiz Hill - 2010 - Axiomathes 20 (2-3):313-332.
    In “Function and Concept” and “On Concept and Object”, Frege argued that certain differences between dependent and independent meanings were inviolable and “founded deep in the nature of things” but, in those articles, he was not explicit about the actual consequences of violating such differences. However, since by creating a law that permitted one to pass from a concept to its extension, he himself mixed dependent and independent meanings, we are in a position to study some of the actual consequences (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • From numerical concepts to concepts of number.Lance J. Rips, Amber Bloomfield & Jennifer Asmuth - 2008 - Behavioral and Brain Sciences 31 (6):623-642.
    Many experiments with infants suggest that they possess quantitative abilities, and many experimentalists believe that these abilities set the stage for later mathematics: natural numbers and arithmetic. However, the connection between these early and later skills is far from obvious. We evaluate two possible routes to mathematics and argue that neither is sufficient: (1) We first sketch what we think is the most likely model for infant abilities in this domain, and we examine proposals for extrapolating the natural number concept (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Neo-fregeanism and quantifier variance.Theodore Sider - 2007 - Aristotelian Society Supplementary Volume 81 (1):201–232.
    NeoFregeanism is an intriguing but elusive philosophy of mathematical existence. At crucial points, it goes cryptic and metaphorical. I want to put forward an interpretation of neoFregeanism—perhaps not one that actual neoFregeans will embrace—that makes sense of much of what they say. NeoFregeans should embrace quantifier variance.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Julius Caesar and Basic Law V.Richard G. Heck - 2005 - Dialectica 59 (2):161–178.
    This paper dates from about 1994: I rediscovered it on my hard drive in the spring of 2002. It represents an early attempt to explore the connections between the Julius Caesar problem and Frege's attitude towards Basic Law V. Most of the issues discussed here are ones treated rather differently in my more recent papers "The Julius Caesar Objection" and "Grundgesetze der Arithmetik I 10". But the treatment here is more accessible, in many ways, providing more context and a better (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • What is a definition?James Robert Brown - 1998 - Foundations of Science 3 (1):111-132.
    According to the standard view of definition, all defined terms are mere stipulations, based on a small set of primitive terms. After a brief review of the Hilbert-Frege debate, this paper goes on to challenge the standard view in a number of ways. Examples from graph theory, for example, suggest that some key definitions stem from the way graphs are presented diagramatically and do not fit the standard view. Lakatos's account is also discussed, since he provides further examples that suggest (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Dedekind's Logicism.José Ferreirós - unknown
    The place of Richard Dedekind in the history of logicism is a controversial matter. The conception of logic incorporated in his work is certainly old-fashioned, in spite of innovative elements that would play an important role in late 19th and early 20th century discussions. Yet his understanding of logic and logicism remains of interest for the light it throws upon the development of modern logic in general, and logicist views of the foundations of mathematics in particular. The paper clarifies Dedekind's (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • L’existence des objets logiques selon Frege.François Rivenc - 2003 - Dialogue 42 (2):291-320.
    Un trait du langage qui menace de saper la sûreté de la pensée est sa tendance à former des noms propres auxquels aucun objet ne correspond. [...] Un exemple particulièrement remarquable de cela est la formation d’un nom propre selon le schéma «l’extension du concept a», par exemple «l’extension du concept étoile». À cause de l’article défini, cette expression semble désigner un objet; mais il n’y a aucun objet pour lequel cette expression pour-rait être une désignation appropriée. De là les (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Predicativity, the Russell-Myhill Paradox, and Church’s Intensional Logic.Sean Walsh - 2016 - Journal of Philosophical Logic 45 (3):277-326.
    This paper sets out a predicative response to the Russell-Myhill paradox of propositions within the framework of Church’s intensional logic. A predicative response places restrictions on the full comprehension schema, which asserts that every formula determines a higher-order entity. In addition to motivating the restriction on the comprehension schema from intuitions about the stability of reference, this paper contains a consistency proof for the predicative response to the Russell-Myhill paradox. The models used to establish this consistency also model other axioms (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The good, the bad and the ugly.Philip Ebert & Stewart Shapiro - 2009 - Synthese 170 (3):415-441.
    This paper discusses the neo-logicist approach to the foundations of mathematics by highlighting an issue that arises from looking at the Bad Company objection from an epistemological perspective. For the most part, our issue is independent of the details of any resolution of the Bad Company objection and, as we will show, it concerns other foundational approaches in the philosophy of mathematics. In the first two sections, we give a brief overview of the "Scottish" neo-logicist school, present a generic form (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Abstracting Propositions.Anthony Wrigley - 2006 - Synthese 151 (2):157-176.
    This paper examines the potential for abstracting propositions – an as yet untested way of defending the realist thesis that propositions as abstract entities exist. I motivate why we should want to abstract propositions and make clear, by basing an account on the neo-Fregean programme in arithmetic, what ontological and epistemological advantages a realist can gain from this. I then raise a series of problems for the abstraction that ultimately have serious repercussions for realism about propositions in general. I first (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Breadth of the Paradox.Patricia Blanchette - 2016 - Philosophia Mathematica 24 (1):30-49.
    This essay examines Frege's reaction to Russell's Paradox and his views about the grounding of existence claims in mathematics. It is argued that Frege's strict requirements on existential proofs would rule out the attempt to ground arithmetic in. It is hoped that this discussion will help to clarify the ways in which Frege's position is both coherent and significantly different from the neo-logicist position on the issues of: what's required for proofs of existence; the connection between models, consistency, and existence; (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Empiricism, Probability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Journal of Applied Logic 12 (3):319–348.
    The topic of this paper is our knowledge of the natural numbers, and in particular, our knowledge of the basic axioms for the natural numbers, namely the Peano axioms. The thesis defended in this paper is that knowledge of these axioms may be gained by recourse to judgements of probability. While considerations of probability have come to the forefront in recent epistemology, it seems safe to say that the thesis defended here is heterodox from the vantage point of traditional philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reference and Paradox.Claire Ortiz Hill - 2004 - Synthese 138 (2):207-232.
    Evidence is drawn together to connect sources of inconsistency that Frege discerned in his foundations for arithmetic with the origins of the paradox derived by Russell in "Basic Laws" I and then with antinomies, paradoxes, contradictions, riddles associated with modal and intensional logics. Examined are: Frege's efforts to grasp logical objects; the philosophical arguments that compelled Russell to adopt a description theory of names and a eliminative theory of descriptions; the resurfacing of issues surrounding reference, descriptions, identity, substitutivity, paradox in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The limits of logical empiricism: selected papers of Arthur Pap.Arthur Pap - 2006 - Dordrecht: Springer. Edited by Alfons Keupink & Sanford Shieh.
    Arthur Pap’s work played an important role in the development of the analytic tradition. This role goes beyond the merely historical fact that Pap’s views of dispositional and modal concepts were influential. As a sympathetic critic of logical empiricism, Pap, like Quine, saw a deep tension in logical empiricism at its very best in the work of Carnap. But Pap’s critique of Carnap is quite different from Quine’s, and represents the discovery of limits beyond which empiricism cannot go, where there (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Frege's natural numbers: Motivations and modifications.Erich Reck - 2005 - In Michael Beaney & Erich Reck (eds.), Gottlob Frege: Critical Assessments of Leading Philosophers, Vol. III. London: Routledge. pp. 270-301.
    Frege's main contributions to logic and the philosophy of mathematics are, on the one hand, his introduction of modern relational and quantificational logic and, on the other, his analysis of the concept of number. My focus in this paper will be on the latter, although the two are closely related, of course, in ways that will also play a role. More specifically, I will discuss Frege's logicist reconceptualization of the natural numbers with the goal of clarifying two aspects: the motivations (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logicismus a paradox (II).Vojtěch Kolman - 2005 - Organon F: Medzinárodný Časopis Pre Analytickú Filozofiu 12 (2):121-140.
    This is the first part of the essay devoted to the story of logicism, in particular to its Fregean version. Reviewing the classical period of Fregean studies, we first point out some critical moments of Frege‘s argumentation in the Grundla­gen, in order to be able later to differentiate between its salvageable and defec­tive features. We work on the presumption that there are no easy, catego­rical an­swers to questions like “Is logicism dead?“: Wittgenstein’s cri­tique of the foundational program as well as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Don't throw the baby out with the math water: Why discounting the developmental foundations of early numeracy is premature and unnecessary.Kevin Muldoon, Charlie Lewis & Norman Freeman - 2008 - Behavioral and Brain Sciences 31 (6):663-664.
    We see no grounds for insisting that, because the concept natural number is abstract, its foundations must be innate. It is possible to specify domain general learning processes that feed into more abstract concepts of numerical infinity. By neglecting the messiness of children's slow acquisition of arithmetical concepts, Rips et al. present an idealized, unnecessarily insular, view of number development.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The state of the economy: Neo-logicism and inflation.Rov T. Cook - 2002 - Philosophia Mathematica 10 (1):43-66.
    In this paper I examine the prospects for a successful neo–logicist reconstruction of the real numbers, focusing on Bob Hale's use of a cut-abstraction principle. There is a serious problem plaguing Hale's project. Natural generalizations of this principle imply that there are far more objects than one would expect from a position that stresses its epistemological conservativeness. In other words, the sort of abstraction needed to obtain a theory of the reals is rampantly inflationary. I also indicate briefly why this (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Frege, Boolos, and logical objects.David J. Anderson & Edward N. Zalta - 2004 - Journal of Philosophical Logic 33 (1):1-26.
    In this paper, the authors discuss Frege's theory of "logical objects" and the recent attempts to rehabilitate it. We show that the 'eta' relation George Boolos deployed on Frege's behalf is similar, if not identical, to the encoding mode of predication that underlies the theory of abstract objects. Whereas Boolos accepted unrestricted Comprehension for Properties and used the 'eta' relation to assert the existence of logical objects under certain highly restricted conditions, the theory of abstract objects uses unrestricted Comprehension for (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Sense and Basic Law V in Frege's logicism.Jan Harald Alnes - 1999 - Nordic Journal of Philosophical Logic 4:1-30.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A new perspective on the problem of applying mathematics.Christopher Pincock - 2004 - Philosophia Mathematica 12 (2):135-161.
    This paper sets out a new framework for discussing a long-standing problem in the philosophy of mathematics, namely the connection between the physical world and a mathematical domain when the mathematics is applied in science. I argue that considering counterfactual situations raises some interesting challenges for some approaches to applications, and consider an approach that avoids these challenges.
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Natural Numbers and Natural Cardinals as Abstract Objects: A Partial Reconstruction of Frege"s Grundgesetze in Object Theory.Edward N. Zalta - 1999 - Journal of Philosophical Logic 28 (6):619-660.
    In this paper, the author derives the Dedekind-Peano axioms for number theory from a consistent and general metaphysical theory of abstract objects. The derivation makes no appeal to primitive mathematical notions, implicit definitions, or a principle of infinity. The theorems proved constitute an important subset of the numbered propositions found in Frege's *Grundgesetze*. The proofs of the theorems reconstruct Frege's derivations, with the exception of the claim that every number has a successor, which is derived from a modal axiom that (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations