Switch to: References

Citations of:

Hilbert’s Program: An Essay on Mathematical Instrumentalism

Dordrecht and Boston: Reidel (1986)

Add citations

You must login to add citations.
  1. Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Shadows of Syntax: Revitalizing Logical and Mathematical Conventionalism.Jared Warren - 2020 - New York, USA: Oxford University Press.
    What is the source of logical and mathematical truth? This book revitalizes conventionalism as an answer to this question. Conventionalism takes logical and mathematical truth to have their source in linguistic conventions. This was an extremely popular view in the early 20th century, but it was never worked out in detail and is now almost universally rejected in mainstream philosophical circles. Shadows of Syntax is the first book-length treatment and defense of a combined conventionalist theory of logic and mathematics. It (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Hilbert's Metamathematical Problems and Their Solutions.Besim Karakadilar - 2008 - Dissertation, Boston University
    This dissertation examines several of the problems that Hilbert discovered in the foundations of mathematics, from a metalogical perspective. The problems manifest themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to the specification of the role of logical inference in mathematical reasoning. This dissertation argues that Hilbert’s axiomatic approach was guided primarily (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • El enfoque epistemológico de David Hilbert: el a priori del conocimiento y el papel de la lógica en la fundamentación de la ciencia.Rodrigo Lopez-Orellana - 2019 - Principia: An International Journal of Epistemology 23 (2):279-308.
    This paper explores the main philosophical approaches of David Hilbert’s theory of proof. Specifically, it is focuses on his ideas regarding logic, the concept of proof, the axiomatic, the concept of truth, metamathematics, the a priori knowledge and the general nature of scientific knowledge. The aim is to show and characterize his epistemological approach on the foundation of knowledge, where logic appears as a guarantee of that foundation. Hilbert supposes that the propositional apriorism, proposed by him to support mathematics, sustains (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The good, the bad and the ugly.Philip Ebert & Stewart Shapiro - 2009 - Synthese 170 (3):415-441.
    This paper discusses the neo-logicist approach to the foundations of mathematics by highlighting an issue that arises from looking at the Bad Company objection from an epistemological perspective. For the most part, our issue is independent of the details of any resolution of the Bad Company objection and, as we will show, it concerns other foundational approaches in the philosophy of mathematics. In the first two sections, we give a brief overview of the "Scottish" neo-logicist school, present a generic form (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Hilbert’s Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material presented (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Different senses of finitude: An inquiry into Hilbert’s finitism.Sören Stenlund - 2012 - Synthese 185 (3):335-363.
    This article develops a critical investigation of the epistemological core of Hilbert's foundational project, the so-called the finitary attitude. The investigation proceeds by distinguishing different senses of 'number' and 'finitude' that have been used in the philosophical arguments. The usual notion of modern pure mathematics, i.e. the sense of number which is implicit in the notion of an arbitrary finite sequence and iteration is one sense of number and finitude. Another sense, of older origin, is connected with practices of counting (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Two (or three) notions of finitism.Mihai Ganea - 2010 - Review of Symbolic Logic 3 (1):119-144.
    Finitism is given an interpretation based on two ideas about strings (sequences of symbols): a replacement principle extracted from Hilberts class 2 can be justified by means of an additional finitistic choice principle, thus obtaining a second equational theory . It is unknown whether is strictly stronger than since 2 may coincide with the class of lower elementary functions.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • How to Say Things with Formalisms.David Auerbach - 1992 - In Michael Detlefsen (ed.), Proof, Logic and Formalization. London, England: Routledge. pp. 77--93.
    Recent attention to "self-consistent" (Rosser-style) systems raises anew the question of the proper interpretation of the Gödel Second Incompleteness Theorem and its effect on Hilbert's Program. The traditional rendering and consequence is defended with new arguments justifying the intensional correctness of the derivability conditions.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Inferential Significance of Frege’s Assertion Sign.Mitchell S. Green - 2002 - Facta Philosophica 4 (2):201-229.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Abstract mathematical tools and machines for mathematics.Jean-Pierre Marquis - 1997 - Philosophia Mathematica 5 (3):250-272.
    In this paper, we try to establish that some mathematical theories, like K-theory, homology, cohomology, homotopy theories, spectral sequences, modern Galois theory (in its various applications), representation theory and character theory, etc., should be thought of as (abstract) machines in the same way that there are (concrete) machines in the natural sciences. If this is correct, then many epistemological and ontological issues in the philosophy of mathematics are seen in a different light. We concentrate on one problem which immediately follows (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Nominalistic metalogic.Ken Akiba - 1998 - Journal of Philosophical Logic 27 (1):35-47.
    This paper offers a novel method for nominalizing metalogic without transcending first-order reasoning about physical tokens (inscriptions, etc.) of proofs. A kind of double-negation scheme is presented which helps construct, for any platonistic statement in metalogic, a nominalistic statement which has the same assertability condition as the former. For instance, to the platonistic statement "there is a (platonistic) proof of A in deductive system D" corresponds the nominalistic statement "there is no (metalogical) proof token in (possibly informal) set theory for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Numbers and functions in Hilbert's finitism.Richard Zach - 1998 - Taiwanese Journal for History and Philosophy of Science 10:33-60.
    David Hilbert's finitistic standpoint is a conception of elementary number theory designed to answer the intuitionist doubts regarding the security and certainty of mathematics. Hilbert was unfortunately not exact in delineating what that viewpoint was, and Hilbert himself changed his usage of the term through the 1920s and 30s. The purpose of this paper is to outline what the main problems are in understanding Hilbert and Bernays on this issue, based on some publications by them which have so far received (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • We hold these truths to be self-evident: But what do we mean by that?: We hold these truths to be self-evident.Stewart Shapiro - 2009 - Review of Symbolic Logic 2 (1):175-207.
    At the beginning of Die Grundlagen der Arithmetik [1884], Frege observes that “it is in the nature of mathematics to prefer proof, where proof is possible”. This, of course, is true, but thinkers differ on why it is that mathematicians prefer proof. And what of propositions for which no proof is possible? What of axioms? This talk explores various notions of self-evidence, and the role they play in various foundational systems, notably those of Frege and Zermelo. I argue that both (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Proof theory in philosophy of mathematics.Andrew Arana - 2010 - Philosophy Compass 5 (4):336-347.
    A variety of projects in proof theory of relevance to the philosophy of mathematics are surveyed, including Gödel's incompleteness theorems, conservation results, independence results, ordinal analysis, predicativity, reverse mathematics, speed-up results, and provability logics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (2 other versions)Philosophy of mathematics.Jeremy Avigad - manuscript
    The philosophy of mathematics plays an important role in analytic philosophy, both as a subject of inquiry in its own right, and as an important landmark in the broader philosophical landscape. Mathematical knowledge has long been regarded as a paradigm of human knowledge with truths that are both necessary and certain, so giving an account of mathematical knowledge is an important part of epistemology. Mathematical objects like numbers and sets are archetypical examples of abstracta, since we treat such objects in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hilbert vindicated?Jaakko Hintikka - 1997 - Synthese 110 (1):15-36.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Hilbert izlencesinin izinde adcılık adına yeni bulgular.Besim Karakadılar - manuscript
    Hilbert izlencesinin kanıt kuramsal amacı tarihsel gelişimi içinde özetlendikten sonra arka plandaki model-kuramsal motivasyonu belirtilmektedir. Hilbert'in nihai hedefinin matematiğin temellerine ilişkin tüm epistemolojik ve ontolojik varsayımlardan arındırılmış bir matematik kuramı geliştirmek olduğu savunulmaktadır. Yakın geçmişte mantıktaki bazı gelişmelerin Hilbert izlencesinin yalnızca adcı varsayımlar temelinde sürdürülebileceğine ilişkin yeni bir bakış açısı sağladığı öne sürülmektedir.
    Download  
     
    Export citation  
     
    Bookmark  
  • Think about the Consequences! Nominalism and the Argument from the Philosophy of Logic.Torsten Wilholt - 2006 - Dialectica 60 (2):115-133.
    Nominalism faces the task of explaining away the ontological commitments of applied mathematical statements. This paper reviews an argument from the philosophy of logic that focuses on this task and which has been used as an objection to certain specific formulations of nominalism. The argument as it is developed in this paper aims to show that nominalism in general does not have the epistemological advantages its defendants claim it has. I distinguish between two strategies that are available to the nominalist: (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the Concept of Finitism.Luca Incurvati - 2015 - Synthese 192 (8):2413-2436.
    At the most general level, the concept of finitism is typically characterized by saying that finitistic mathematics is that part of mathematics which does not appeal to completed infinite totalities and is endowed with some epistemological property that makes it secure or privileged. This paper argues that this characterization can in fact be sharpened in various ways, giving rise to different conceptions of finitism. The paper investigates these conceptions and shows that they sanction different portions of mathematics as finitistic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Paradox of the Knower revisited.Walter Dean & Hidenori Kurokawa - 2014 - Annals of Pure and Applied Logic 165 (1):199-224.
    The Paradox of the Knower was originally presented by Kaplan and Montague [26] as a puzzle about the everyday notion of knowledge in the face of self-reference. The paradox shows that any theory extending Robinson arithmetic with a predicate K satisfying the factivity axiom K → A as well as a few other epistemically plausible principles is inconsistent. After surveying the background of the paradox, we will focus on a recent debate about the role of epistemic closure principles in the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Perspective on Hilbert.David E. Rowe - 1997 - Perspectives on Science 5 (4):533-570.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Non-ontological Structuralism†.Michael Resnik - 2019 - Philosophia Mathematica 27 (3):303-315.
    ABSTRACT Historical structuralist views have been ontological. They either deny that there are any mathematical objects or they maintain that mathematical objects are structures or positions in them. Non-ontological structuralism offers no account of the nature of mathematical objects. My own structuralism has evolved from an early sui generis version to a non-ontological version that embraces Quine’s doctrine of ontological relativity. In this paper I further develop and explain this view.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Three Schools of Paraconsistency.Koji Tanaka - 2003 - Australasian Journal of Logic 1:28-42.
    A logic is said to be paraconsistent if it does not allow everything to follow from contradictory premises. There are several approaches to paraconsistency. This paper is concerned with several philosophical positions on paraconsistency. In particular, it concerns three ‘schools’ of paraconsistency: Australian, Belgian and Brazilian. The Belgian and Brazilian schools have raised some objections to the dialetheism of the Australian school. I argue that the Australian school of paraconsistency need not be closed down on the basis of the Belgian (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On an alleged refutation of Hilbert's program using gödel's first incompleteness theorem.Michael Detlefsen - 1990 - Journal of Philosophical Logic 19 (4):343 - 377.
    It is argued that an instrumentalist notion of proof such as that represented in Hilbert's viewpoint is not obligated to satisfy the conservation condition that is generally regarded as a constraint on Hilbert's Program. A more reasonable soundness condition is then considered and shown not to be counter-exemplified by Godel's First Theorem. Finally, attention is given to the question of what a theory is; whether it should be seen as a "list" or corpus of beliefs, or as a method for (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Fundamental results for pointfree convex geometry.Yoshihiro Maruyama - 2010 - Annals of Pure and Applied Logic 161 (12):1486-1501.
    Inspired by locale theory, we propose “pointfree convex geometry”. We introduce the notion of convexity algebra as a pointfree convexity space. There are two notions of a point for convexity algebra: one is a chain-prime meet-complete filter and the other is a maximal meet-complete filter. In this paper we show the following: the former notion of a point induces a dual equivalence between the category of “spatial” convexity algebras and the category of “sober” convexity spaces as well as a dual (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Against ontological reduction.Frederick W. Kroon - 1992 - Erkenntnis 36 (1):53 - 81.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Gödelian Inferences.Curtis Franks - 2009 - History and Philosophy of Logic 30 (3):241-256.
    I attribute an 'intensional reading' of the second incompleteness theorem to its author, Kurt G del. My argument builds partially on an analysis of intensional and extensional conceptions of meta-mathematics and partially on the context in which G del drew two familiar inferences from his theorem. Those inferences, and in particular the way that they appear in G del's writing, are so dubious on the extensional conception that one must doubt that G del could have understood his theorem extensionally. However, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • O nadużywaniu twierdzenia Gödla w sporach filozoficznych.Krzysztof Wójtowicz - 1996 - Zagadnienia Filozoficzne W Nauce 19.
    Download  
     
    Export citation  
     
    Bookmark