Switch to: References

Add citations

You must login to add citations.
  1. Speaking with Shadows: A Study of Neo‐Logicism.Fraser MacBride - 2003 - British Journal for the Philosophy of Science 54 (1):103-163.
    According to the species of neo-logicism advanced by Hale and Wright, mathematical knowledge is essentially logical knowledge. Their view is found to be best understood as a set of related though independent theses: (1) neo-fregeanism-a general conception of the relation between language and reality; (2) the method of abstraction-a particular method for introducing concepts into language; (3) the scope of logic-second-order logic is logic. The criticisms of Boolos, Dummett, Field and Quine (amongst others) of these theses are explicated and assessed. (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Is Hume's principle analytic?Crispin Wright - 1999 - Notre Dame Journal of Formal Logic 40 (1):307-333.
    This paper is a reply to George Boolos's three papers (Boolos (1987a, 1987b, 1990a)) concerned with the status of Hume's Principle. Five independent worries of Boolos concerning the status of Hume's Principle as an analytic truth are identified and discussed. Firstly, the ontogical concern about the commitments of Hume's Principle. Secondly, whether Hume's Principle is in fact consistent and whether the commitment to the universal number by adopting Hume's Principle might be problematic. Also the so-called `surplus content' worry is discussed, (...)
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • The Paradox of Sufficient Reason.Samuel Levey - 2016 - Philosophical Review Recent Issues 125 (3):397-430.
    It can be shown by means of a paradox that, given the Principle of Sufficient Reason, there is no conjunction of all contingent truths. The question is, or ought to be, how to interpret that result: _Quid sibi velit?_ A celebrated argument against PSR due to Peter van Inwagen and Jonathan Bennett in effect interprets the result to mean that PSR entails that there are no contingent truths. But reflection on parallels in philosophy of mathematics shows it can equally be (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Inclosures, Vagueness, and Self-Reference.Graham Priest - 2010 - Notre Dame Journal of Formal Logic 51 (1):69-84.
    In this paper, I start by showing that sorites paradoxes are inclosure paradoxes. That is, they fit the Inclosure Scheme which characterizes the paradoxes of self-reference. Given that sorites and self-referential paradoxes are of the same kind, they should have the same kind of solution. The rest of the paper investigates what a dialetheic solution to sorites paradoxes is like, connections with a dialetheic solution to the self-referential paradoxes, and related issues—especially so called "higher order" vagueness.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Truth and proof: The platonism of mathematics.W. W. Tait - 1986 - Synthese 69 (3):341 - 370.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • (1 other version)Hyperintensional Ω-Logic.David Elohim - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag. pp. 65-82.
    This paper examines the philosophical significance of the consequence relation defined in the $\Omega$-logic for set-theoretic languages. I argue that, as with second-order logic, the hyperintensional profile of validity in $\Omega$-Logic enables the property to be epistemically tractable. Because of the duality between coalgebras and algebras, Boolean-valued models of set theory can be interpreted as coalgebras. In Section \textbf{2}, I demonstrate how the hyperintensional profile of $\Omega$-logical validity can be countenanced within a coalgebraic logic. Finally, in Section \textbf{3}, the philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Deflationism, Arithmetic, and the Argument from Conservativeness.Daniel Waxman - 2017 - Mind 126 (502):429-463.
    Many philosophers believe that a deflationist theory of truth must conservatively extend any base theory to which it is added. But when applied to arithmetic, it's argued, the imposition of a conservativeness requirement leads to a serious objection to deflationism: for the Gödel sentence for Peano Arithmetic is not a theorem of PA, but becomes one when PA is extended by adding plausible principles governing truth. This paper argues that no such objection succeeds. The issue turns on how we understand (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Against the iterative conception of set.Edward Ferrier - 2019 - Philosophical Studies 176 (10):2681-2703.
    According to the iterative conception of set, each set is a collection of sets formed prior to it. The notion of priority here plays an essential role in explanations of why contradiction-inducing sets, such as the Russell set, do not exist. Consequently, these explanations are successful only to the extent that a satisfactory priority relation is made out. I argue that attempts to do this have fallen short: understanding priority in a straightforwardly constructivist sense threatens the coherence of the empty (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The state of the economy: Neo-logicism and inflation.Rov T. Cook - 2002 - Philosophia Mathematica 10 (1):43-66.
    In this paper I examine the prospects for a successful neo–logicist reconstruction of the real numbers, focusing on Bob Hale's use of a cut-abstraction principle. There is a serious problem plaguing Hale's project. Natural generalizations of this principle imply that there are far more objects than one would expect from a position that stresses its epistemological conservativeness. In other words, the sort of abstraction needed to obtain a theory of the reals is rampantly inflationary. I also indicate briefly why this (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (1 other version)Hyperintensional Ω-Logic.David Elohim - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag.
    This essay examines the philosophical significance of $\Omega$-logic in Zermelo-Fraenkel set theory with choice (ZFC). The categorical duality between coalgebra and algebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The hyperintensional profile of $\Omega$-logical validity can then be countenanced within a coalgebraic logic. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal and hyperintensional profiles of $\Omega$-logical validity correspond to those of second-order logical consequence, $\Omega$-logical validity is genuinely (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Wittgenstein as his own worst enemy: The case of gödel's theorem.Mark Steiner - 2001 - Philosophia Mathematica 9 (3):257-279.
    Remarks on the Foundations of Mathematics, Wittgenstein, despite his official 'mathematical nonrevisionism', slips into attempting to refute Gödel's theorem. Actually, Wittgenstein could have used Gödel's theorem to good effect, to support his view that proof, and even truth, are 'family resemblance' concepts. The reason that Wittgenstein did not see all this is that Gödel's theorem had become an icon of mathematical realism, and he was blinded by his own ideology. The essay is a reply to Juliet Floyd's work on Gödel: (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Should Anti-Realists be Anti-Realists About Anti-Realism?Roy T. Cook - 2014 - Erkenntnis 79 (S2):233-258.
    On the Dummettian understanding, anti-realism regarding a particular discourse amounts to (or at the very least, involves) a refusal to accept the determinacy of the subject matter of that discourse and a corresponding refusal to assert at least some instances of excluded middle (which can be understood as expressing this determinacy of subject matter). In short: one is an anti-realist about a discourse if and only if one accepts intuitionistic logic as correct for that discourse. On careful examination, the strongest (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Models and Recursivity.Walter Dean - manuscript
    It is commonly held that the natural numbers sequence 0, 1, 2,... possesses a unique structure. Yet by a well known model theoretic argument, there exist non-standard models of the formal theory which is generally taken to axiomatize all of our practices and intentions pertaining to use of the term “natural number.” Despite the structural similarity of this argument to the influential set theoretic indeterminacy argument based on the downward L ̈owenheim-Skolem theorem, most theorists agree that the number theoretic version (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Conceivability, Essence, and Haecceities.David Elohim - manuscript
    This essay aims to redress the contention that epistemic possibility cannot be a guide to the principles of modal metaphysics. I introduce a novel epistemic two-dimensional truthmaker semantics. I argue that the interaction between the two-dimensional framework and the mereological parthood relation, which is super-rigid, enables epistemic possibilities and truthmakers with regard to parthood to be a guide to its metaphysical profile. I specify, further, a two-dimensional formula encoding the relation between the epistemic possibility and verification of essential properties obtaining (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hyperintensional Foundations of Mathematical Platonism.David Elohim - manuscript
    This paper aims to provide hyperintensional foundations for mathematical platonism. I examine Hale and Wright's (2009) objections to the merits and need, in the defense of mathematical platonism and its epistemology, of the thesis of Necessitism. In response to Hale and Wright's objections to the role of epistemic and metaphysical modalities in providing justification for both the truth of abstraction principles and the success of mathematical predicate reference, I examine the Necessitist commitments of the abundant conception of properties endorsed by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hyperintensional Category Theory and Indefinite Extensibility.David Elohim - manuscript
    This essay endeavors to define the concept of indefinite extensibility in the setting of category theory. I argue that the generative property of indefinite extensibility for set-theoretic truths in category theory is identifiable with the Grothendieck Universe Axiom and the elementary embeddings in Vopenka's principle. The interaction between the interpretational and objective modalities of indefinite extensibility is defined via the epistemic interpretation of two-dimensional semantics. The semantics can be defined intensionally or hyperintensionally. By characterizing the modal profile of $\Omega$-logical validity, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Internal Categoricity, Truth and Determinacy.Martin Fischer & Matteo Zicchetti - 2023 - Journal of Philosophical Logic 52 (5):1295-1325.
    This paper focuses on the categoricity of arithmetic and determinacy of arithmetical truth. Several ‘internal’ categoricity results have been discussed in the recent literature. Against the background of the philosophical position called internalism, we propose and investigate truth-theoretic versions of internal categoricity based on a primitive truth predicate. We argue for the compatibility of a primitive truth predicate with internalism and provide a novel argument for (and proof of) a truth-theoretic version of internal categoricity and internal determinacy with some positive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Deflationism and arithmetical truth.Tapani Hyttinen & Gabriel Sandu - 2004 - Dialectica 58 (3):413–426.
    Deflationists have argued that truth is an ontologically thin property which has only an expressive function to perform, that is, it makes possible to express semantic generalizations like 'All the theorems are true', 'Everything Peter said is true', etc. Some of the deflationists have also argued that although truth is ontologically thin, it suffices in conjunctions with other facts not involving truth to explain all the facts about truth. The purpose of this paper is to show that in the case (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • How Arithmetic is about Numbers. A Wittgenestinian Perspective.Felix Mühlhölzer - 2014 - Grazer Philosophische Studien 89 (1):39-59.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Set Theory, Skolem's paradox and the Tractatatus.A. W. Moore - 1985 - Analysis 45 (1):13--20.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Intuitionism and the anti-justification of bivalence.Peter Pagin - 2008 - Philosophical Explorations.
    forthcoming in S. Lindström, E. Palmgren, K. Segerberg, and V. Stoltenberg-Hansen (eds) Logicism, Intuitionism, and Formalism — What has Become of Them?, Synthese Library, Springer. Pdf file.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Gödel, truth & proof.Jaroslav Peregrin - manuscript
    In this paper I would like to indicate that this interpretation of Gödel goes far beyond what he really proved. I would like to show that to get from his result to a conclusion of the above kind requires a train of thought which is fuelled by much more than Gödel's result itself, and that a great deal of the excessive fuel should be utilized with an extra care.
    Download  
     
    Export citation  
     
    Bookmark  
  • Information theory, quantum mechanics and‘linguistic duality’.C. T. K. Chari - 1966 - Dialectica 20 (1):67-88.
    – The paper explores first the postulational basis and significance of‘measures of information’in current information theory and their possible relations to physical entropy and Brillouin's‘negentropy’regarded as the negative of entropy. For some purposes, the same pattern or formal structure may be abstracted from both‘entropy’and‘information’. The paper analyzes, in the second place, the mathematical analogies which have been traced between information theory and quantum mechanics and argues that the analogies have but a limited value when we come to grips with the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantification and Paradox.Edward Ferrier - 2018 - Dissertation, University of Massachusetts Amherst
    I argue that absolutism, the view that absolutely unrestricted quantification is possible, is to blame for both the paradoxes that arise in naive set theory and variants of these paradoxes that arise in plural logic and in semantics. The solution is restrictivism, the view that absolutely unrestricted quantification is not possible. -/- It is generally thought that absolutism is true and that restrictivism is not only false, but inexpressible. As a result, the paradoxes are blamed, not on illicit quantification, but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark