Switch to: References

Add citations

You must login to add citations.
  1. Explanatory Asymmetries, Ground, and Ontological Dependence.Lina Jansson - 2017 - Erkenntnis 82 (1):17-44.
    The notions of ground and ontological dependence have made a prominent resurgence in much of contemporary metaphysics. However, objections have been raised. On the one hand, objections have been raised to the need for distinctively metaphysical notions of ground and ontological dependence. On the other, objections have been raised to the usefulness of adding ground and ontological dependence to the existing store of other metaphysical notions. Even the logical properties of ground and ontological dependence are under debate. In this article, (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • ∈ : Formal concepts in a material world truthmaking and exemplification as types of determination.Philipp Keller - 2007 - Dissertation, University of Geneva
    In the first part ("Determination"), I consider different notions of determination, contrast and compare modal with non-modal accounts and then defend two a-modality theses concerning essence and supervenience. I argue, first, that essence is a a-modal notion, i.e. not usefully analysed in terms of metaphysical modality, and then, contra Kit Fine, that essential properties can be exemplified contingently. I argue, second, that supervenience is also an a-modal notion, and that it should be analysed in terms of constitution relations between properties. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Iterative Conception of Set: a (Bi-)Modal Axiomatisation.J. P. Studd - 2013 - Journal of Philosophical Logic 42 (5):1-29.
    The use of tensed language and the metaphor of set ‘formation’ found in informal descriptions of the iterative conception of set are seldom taken at all seriously. Both are eliminated in the nonmodal stage theories that formalise this account. To avoid the paradoxes, such accounts deny the Maximality thesis, the compelling thesis that any sets can form a set. This paper seeks to save the Maximality thesis by taking the tense more seriously than has been customary (although not literally). A (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • How to tell universals from particulars.Philipp Keller - unknown
    I reassess the famous arguments of Frank Plumpton Ramsey (1925) against the tenability of the distinction between particulars and universals and discuss their recent elaboration by Fraser MacBride. I argue that Ramsey’s argument is ambiguous between kinds and properties and that his sceptical worries can be resolved once this distinction is taken into account. A crucial role in this dissolution is a notion of what is essential to a property. I close by some epistemological considerations.
    Download  
     
    Export citation  
     
    Bookmark  
  • A new perspective on the problem of applying mathematics.Christopher Pincock - 2004 - Philosophia Mathematica 12 (2):135-161.
    This paper sets out a new framework for discussing a long-standing problem in the philosophy of mathematics, namely the connection between the physical world and a mathematical domain when the mathematics is applied in science. I argue that considering counterfactual situations raises some interesting challenges for some approaches to applications, and consider an approach that avoids these challenges.
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Intention: Hyperintensional Semantics and Decision Theory.David Elohim - manuscript
    This paper argues that the types of intention can be modeled both as modal operators and via a multi-hyperintensional semantics. I delineate the semantic profiles of the types of intention, and provide a precise account of how the types of intention are unified in virtue of both their operations in a single, encompassing, epistemic space, and their role in practical reasoning. I endeavor to provide reasons adducing against the proposal that the types of intention are reducible to the mental states (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Essence, necessity, and definition.Justin Zylstra - 2019 - Philosophical Studies 176 (2):339-350.
    What is it for something to be essential to an item? For some time, it was standard to think that the concept of necessity alone can provide an answer: for something to be essential to an item is for it to be strictly implied by the existence of that item. We now tend to think that this view fails because its analysans is insufficient for its analysandum. In response, some argue that we can supplement the analysis in terms of necessity (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Modal set theory.Christopher Menzel - 2018 - In Otávio Bueno & Scott A. Shalkowski (eds.), The Routledge Handbook of Modality. New York: Routledge.
    This article presents an overview of the basic philosophical motivations for, and some recent work in, modal set theory.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hyperintensional Foundations of Mathematical Platonism.David Elohim - manuscript
    This paper aims to provide hyperintensional foundations for mathematical platonism. I examine Hale and Wright's (2009) objections to the merits and need, in the defense of mathematical platonism and its epistemology, of the thesis of Necessitism. In response to Hale and Wright's objections to the role of epistemic and metaphysical modalities in providing justification for both the truth of abstraction principles and the success of mathematical predicate reference, I examine the Necessitist commitments of the abundant conception of properties endorsed by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modality and Hyperintensionality in Mathematics.David Elohim - manuscript
    This paper aims to contribute to the analysis of the nature of mathematical modality and hyperintensionality, and to the applications of the latter to absolute decidability. Rather than countenancing the interpretational type of mathematical modality as a primitive, I argue that the interpretational type of mathematical modality is a species of epistemic modality. I argue, then, that the framework of two-dimensional semantics ought to be applied to the mathematical setting. The framework permits of a formally precise account of the priority (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantification and Paradox.Edward Ferrier - 2018 - Dissertation, University of Massachusetts Amherst
    I argue that absolutism, the view that absolutely unrestricted quantification is possible, is to blame for both the paradoxes that arise in naive set theory and variants of these paradoxes that arise in plural logic and in semantics. The solution is restrictivism, the view that absolutely unrestricted quantification is not possible. -/- It is generally thought that absolutism is true and that restrictivism is not only false, but inexpressible. As a result, the paradoxes are blamed, not on illicit quantification, but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (2 other versions)First-order modal theories III — facts.Kit Fine - 1982 - Synthese 53 (1):43-122.
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Extensionalizing Intensional Second-Order Logic.Jonathan Payne - 2015 - Notre Dame Journal of Formal Logic 56 (1):243-261.
    Neo-Fregean approaches to set theory, following Frege, have it that sets are the extensions of concepts, where concepts are the values of second-order variables. The idea is that, given a second-order entity $X$, there may be an object $\varepsilon X$, which is the extension of X. Other writers have also claimed a similar relationship between second-order logic and set theory, where sets arise from pluralities. This paper considers two interpretations of second-order logic—as being either extensional or intensional—and whether either is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gestalt and functional dependence.Peter M. Simons - 1988 - In Barry Smith (ed.), Foundations of Gestalt Theory. Philosophia. pp. 158--190.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Cognitivism about Epistemic Modality.David Elohim - manuscript
    This paper aims to vindicate the thesis that cognitive computational properties are abstract objects implemented in physical systems. I avail of the equivalence relations countenanced in Homotopy Type Theory, in order to specify an abstraction principle for epistemic intensions. The homotopic abstraction principle for epistemic intensions provides an epistemic conduit into our knowledge of intensions as abstract objects. I examine, then, how intensional functions in Epistemic Modal Algebra are deployed as core models in the philosophy of mind, Bayesian perceptual psychology, (...)
    Download  
     
    Export citation  
     
    Bookmark