Switch to: References

Add citations

You must login to add citations.
  1. A Taxonomy for Set-Theoretic Potentialism.Davide Sutto - 2024 - Philosophia Mathematica:1-28.
    Set-theoretic potentialism is one of the most lively trends in the philosophy of mathematics. Modal accounts of sets have been developed in two different ways. The first, initiated by Charles Parsons, focuses on sets as objects. The second, dating back to Hilary Putnam and Geoffrey Hellman, investigates set-theoretic structures. The paper identifies two strands of open issues, technical and conceptual, to clarify these two different, yet often conflated, views and categorize the potentialist approaches that have emerged in the contemporary debate. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Weyl and Two Kinds of Potential Domains.Laura Crosilla & Øystein Linnebo - forthcoming - Noûs.
    According to Weyl, “‘inexhaustibility’ is essential to the infinite”. However, he distinguishes two kinds of inexhaustible, or merely potential, domains: those that are “extensionally determinate” and those that are not. This article clarifies Weyl's distinction and explains its enduring logical and philosophical significance. The distinction sheds lights on the contemporary debate about potentialism, which in turn affords a deeper understanding of Weyl.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Divergent Potentialism: A Modal Analysis With an Application to Choice Sequences.Ethan Brauer, Øystein Linnebo & Stewart Shapiro - 2022 - Philosophia Mathematica 30 (2):143-172.
    Modal logic has been used to analyze potential infinity and potentialism more generally. However, the standard analysis breaks down in cases of divergent possibilities, where there are two or more possibilities that can be individually realized but which are jointly incompatible. This paper has three aims. First, using the intuitionistic theory of choice sequences, we motivate the need for a modal analysis of divergent potentialism and explain the challenges this involves. Then, using Beth–Kripke semantics for intuitionistic logic, we overcome those (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • ‘True’ as Polysemous.Andy Yu - 2021 - Pacific Philosophical Quarterly 102 (4):542-569.
    In this paper, I propose that 'true’ is polysemous, and thus ambiguous. I suggest that the semantic paradoxes both motivates taking 'true’ to be polysemous and shows that the concept truth is indefinitely extensible. In doing so, I explain that 'true’ is polysemous between the meanings corresponding to the subconcepts of the concept truth generated by such indefinite extensibility. I conclude that the proposal provides satisfying solutions to the semantic paradoxes.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Level Theory, Part 2: Axiomatizing the Bare Idea of a Potential Hierarchy.Tim Button - 2021 - Bulletin of Symbolic Logic 27 (4):461-484.
    Potentialists think that the concept of set is importantly modal. Using tensed language as an heuristic, the following bar-bones story introduces the idea of a potential hierarchy of sets: 'Always: for any sets that existed, there is a set whose members are exactly those sets; there are no other sets.' Surprisingly, this story already guarantees well-foundedness and persistence. Moreover, if we assume that time is linear, the ensuing modal set theory is almost definitionally equivalent with non-modal set theories; specifically, with (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mirroring Theorems in Free Logic.Ethan Brauer - 2020 - Notre Dame Journal of Formal Logic 61 (4):561-572.
    Linnebo and Shapiro have recently given an analysis of potential infinity using modal logic. A key technical component of their account is to show that under a suitable translation ◊ of nonmodal language into modal language, nonmodal sentences ϕ 1, …, ϕ n entail ψ just in case ϕ 1 ◊, …, ϕ n ◊ entail ψ ◊ in the modal logic S4.2. Linnebo and Shapiro establish this result in nonfree logic. In this note I argue that their analysis of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Many and the One: A Philosophical Study of Plural Logic.Salvatore Florio & Øystein Linnebo - 2021 - Oxford, England: Oxford University Press.
    Plural expressions found in natural languages allow us to talk about many objects simultaneously. Plural logic — a logical system that takes plurals at face value — has seen a surge of interest in recent years. This book explores its broader significance for philosophy, logic, and linguistics. What can plural logic do for us? Are the bold claims made on its behalf correct? After introducing plural logic and its main applications, the book provides a systematic analysis of the relation between (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The modal logic of set-theoretic potentialism and the potentialist maximality principles.Joel David Hamkins & Øystein Linnebo - 2022 - Review of Symbolic Logic 15 (1):1-35.
    We analyze the precise modal commitments of several natural varieties of set-theoretic potentialism, using tools we develop for a general model-theoretic account of potentialism, building on those of Hamkins, Leibman and Löwe [14], including the use of buttons, switches, dials and ratchets. Among the potentialist conceptions we consider are: rank potentialism, Grothendieck–Zermelo potentialism, transitive-set potentialism, forcing potentialism, countable-transitive-model potentialism, countable-model potentialism, and others. In each case, we identify lower bounds for the modal validities, which are generally either S4.2 or S4.3, (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Bi-Modal Naive Set Theory.John Wigglesworth - 2018 - Australasian Journal of Logic 15 (2):139-150.
    This paper describes a modal conception of sets, according to which sets are 'potential' with respect to their members. A modal theory is developed, which invokes a naive comprehension axiom schema, modified by adding `forward looking' and `backward looking' modal operators. We show that this `bi-modal' naive set theory can prove modalized interpretations of several ZFC axioms, including the axiom of infinity. We also show that the theory is consistent by providing an S5 Kripke model. The paper concludes with some (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantification and Paradox.Edward Ferrier - 2018 - Dissertation, University of Massachusetts Amherst
    I argue that absolutism, the view that absolutely unrestricted quantification is possible, is to blame for both the paradoxes that arise in naive set theory and variants of these paradoxes that arise in plural logic and in semantics. The solution is restrictivism, the view that absolutely unrestricted quantification is not possible. -/- It is generally thought that absolutism is true and that restrictivism is not only false, but inexpressible. As a result, the paradoxes are blamed, not on illicit quantification, but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Against the iterative conception of set.Edward Ferrier - 2019 - Philosophical Studies 176 (10):2681-2703.
    According to the iterative conception of set, each set is a collection of sets formed prior to it. The notion of priority here plays an essential role in explanations of why contradiction-inducing sets, such as the Russell set, do not exist. Consequently, these explanations are successful only to the extent that a satisfactory priority relation is made out. I argue that attempts to do this have fallen short: understanding priority in a straightforwardly constructivist sense threatens the coherence of the empty (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)The Necessity of Mathematics.Juhani Yli‐Vakkuri & John Hawthorne - 2018 - Noûs 52 (3):549-577.
    Some have argued for a division of epistemic labor in which mathematicians supply truths and philosophers supply their necessity. We argue that this is wrong: mathematics is committed to its own necessity. Counterfactuals play a starring role.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Can Modalities Save Naive Set Theory?Peter Fritz, Harvey Lederman, Tiankai Liu & Dana Scott - 2018 - Review of Symbolic Logic 11 (1):21-47.
    To the memory of Prof. Grigori Mints, Stanford UniversityBorn: June 7, 1939, St. Petersburg, RussiaDied: May 29, 2014, Palo Alto, California.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Modal set theory.Christopher Menzel - 2018 - In Otávio Bueno & Scott A. Shalkowski (eds.), The Routledge Handbook of Modality. New York: Routledge.
    This article presents an overview of the basic philosophical motivations for, and some recent work in, modal set theory.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hyperintensional Foundations of Mathematical Platonism.David Elohim - manuscript
    This paper aims to provide hyperintensional foundations for mathematical platonism. I examine Hale and Wright's (2009) objections to the merits and need, in the defense of mathematical platonism and its epistemology, of the thesis of Necessitism. In response to Hale and Wright's objections to the role of epistemic and metaphysical modalities in providing justification for both the truth of abstraction principles and the success of mathematical predicate reference, I examine the Necessitist commitments of the abundant conception of properties endorsed by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Abstracta.Gonçalo Santos - 2014 - Compêndio Em Linha de Problemas de Filosofia Analítica.
    A noção de objecto abstracto desempenha um papel central em diferentes debates filosóficos contemporâneos, da metafísica à estética, passando pela filosofia da linguagem. A sua origem está contudo relacionada com a filosofia da matemática e em particular, com o trabalho de Frege nos fundamentos da aritmética. O nosso primeiro objectivo será assim o de explicar o contributo desta noção para o entendimento Fregeano da realidade matemática. Veremos também que, em virtude de certas dificuldades inerentes ao projeto Fregeano, a dada altura (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modality and Hyperintensionality in Mathematics.David Elohim - manuscript
    This paper aims to contribute to the analysis of the nature of mathematical modality and hyperintensionality, and to the applications of the latter to absolute decidability. Rather than countenancing the interpretational type of mathematical modality as a primitive, I argue that the interpretational type of mathematical modality is a species of epistemic modality. I argue, then, that the framework of two-dimensional semantics ought to be applied to the mathematical setting. The framework permits of a formally precise account of the priority (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cognitivism about Epistemic Modality.David Elohim - manuscript
    This paper aims to vindicate the thesis that cognitive computational properties are abstract objects implemented in physical systems. I avail of the equivalence relations countenanced in Homotopy Type Theory, in order to specify an abstraction principle for epistemic intensions. The homotopic abstraction principle for epistemic intensions provides an epistemic conduit into our knowledge of intensions as abstract objects. I examine, then, how intensional functions in Epistemic Modal Algebra are deployed as core models in the philosophy of mind, Bayesian perceptual psychology, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hyperintensional Category Theory and Indefinite Extensibility.David Elohim - manuscript
    This essay endeavors to define the concept of indefinite extensibility in the setting of category theory. I argue that the generative property of indefinite extensibility for set-theoretic truths in category theory is identifiable with the Grothendieck Universe Axiom and the elementary embeddings in Vopenka's principle. The interaction between the interpretational and objective modalities of indefinite extensibility is defined via the epistemic interpretation of two-dimensional semantics. The semantics can be defined intensionally or hyperintensionally. By characterizing the modal profile of $\Omega$-logical validity, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal science.Timothy Williamson - 2016 - Canadian Journal of Philosophy 46 (4-5):453-492.
    This paper explains and defends the idea that metaphysical necessity is the strongest kind of objective necessity. Plausible closure conditions on the family of objective modalities are shown to entail that the logic of metaphysical necessity is S5. Evidence is provided that some objective modalities are studied in the natural sciences. In particular, the modal assumptions implicit in physical applications of dynamical systems theory are made explicit by using such systems to define models of a modal temporal logic. Those assumptions (...)
    Download  
     
    Export citation  
     
    Bookmark   103 citations  
  • Indefinite Divisibility.Jeffrey Sanford Russell - 2016 - Inquiry: An Interdisciplinary Journal of Philosophy 59 (3):239-263.
    Some hold that the lesson of Russell’s paradox and its relatives is that mathematical reality does not form a ‘definite totality’ but rather is ‘indefinitely extensible’. There can always be more sets than there ever are. I argue that certain contact puzzles are analogous to Russell’s paradox this way: they similarly motivate a vision of physical reality as iteratively generated. In this picture, the divisions of the continuum into smaller parts are ‘potential’ rather than ‘actual’. Besides the intrinsic interest of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Sets and supersets.Toby Meadows - 2016 - Synthese 193 (6):1875-1907.
    It is a commonplace of set theory to say that there is no set of all well-orderings nor a set of all sets. We are implored to accept this due to the threat of paradox and the ensuing descent into unintelligibility. In the absence of promising alternatives, we tend to take up a conservative stance and tow the line: there is no universe. In this paper, I am going to challenge this claim by taking seriously the idea that we can (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The potential hierarchy of sets.Øystein Linnebo - 2013 - Review of Symbolic Logic 6 (2):205-228.
    Some reasons to regard the cumulative hierarchy of sets as potential rather than actual are discussed. Motivated by this, a modal set theory is developed which encapsulates this potentialist conception. The resulting theory is equi-interpretable with Zermelo Fraenkel set theory but sheds new light on the set-theoretic paradoxes and the foundations of set theory.
    Download  
     
    Export citation  
     
    Bookmark   103 citations  
  • (1 other version)Platonism in the Philosophy of Mathematics.Øystein Linnebo - forthcoming - Stanford Encyclopedia of Philosophy.
    Platonism about mathematics (or mathematical platonism) isthe metaphysical view that there are abstract mathematical objectswhose existence is independent of us and our language, thought, andpractices. Just as electrons and planets exist independently of us, sodo numbers and sets. And just as statements about electrons and planetsare made true or false by the objects with which they are concerned andthese objects' perfectly objective properties, so are statements aboutnumbers and sets. Mathematical truths are therefore discovered, notinvented., Existence. There are mathematical objects.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Varieties of Indefinite Extensibility.Gabriel Uzquiano - 2015 - Notre Dame Journal of Formal Logic 56 (1):147-166.
    We look at recent accounts of the indefinite extensibility of the concept set and compare them with a certain linguistic model of indefinite extensibility. We suggest that the linguistic model has much to recommend over alternative accounts of indefinite extensibility, and we defend it against three prima facie objections.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • A Modal Account of Propositions.Andy Demfree Yu - 2017 - Dialectica 71 (4):463-488.
    In this paper, I motivate a modal account of propositions on the basis of an iterative conception of propositions. As an application, I suggest that the account provides a satisfying solution to the Russell-Myhill paradox. The account is in the spirit of recently developed modal accounts of sets motivated on the basis of the iterative conception of sets.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Abstraction Reconceived.J. P. Studd - 2016 - British Journal for the Philosophy of Science 67 (2):579-615.
    Neologicists have sought to ground mathematical knowledge in abstraction. One especially obstinate problem for this account is the bad company problem. The leading neologicist strategy for resolving this problem is to attempt to sift the good abstraction principles from the bad. This response faces a dilemma: the system of ‘good’ abstraction principles either falls foul of the Scylla of inconsistency or the Charybdis of being unable to recover a modest portion of Zermelo–Fraenkel set theory with its intended generality. This article (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • (1 other version)The Necessity of Mathematics.Juhani Yli-Vakkuri & John Hawthorne - 2020 - Noûs 54 (3):549-577.
    Some have argued for a division of epistemic labor in which mathematicians supply truths and philosophers supply their necessity. We argue that this is wrong: mathematics is committed to its own necessity. Counterfactuals play a starring role.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Mathematical Modality: An Investigation in Higher-order Logic.Andrew Bacon - 2024 - Journal of Philosophical Logic 53 (1):131-179.
    An increasing amount of contemporary philosophy of mathematics posits, and theorizes in terms of special kinds of mathematical modality. The goal of this paper is to bring recent work on higher-order metaphysics to bear on the investigation of these modalities. The main focus of the paper will be views that posit mathematical contingency or indeterminacy about statements that concern the ‘width’ of the set theoretic universe, such as Cantor’s continuum hypothesis. Within a higher-order framework I show that contingency about the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantifier Variance and Indefinite Extensibility.Jared Warren - 2017 - Philosophical Review 126 (1):81-122.
    This essay clarifies quantifier variance and uses it to provide a theory of indefinite extensibility that I call the variance theory of indefinite extensibility. The indefinite extensibility response to the set-theoretic paradoxes sees each argument for paradox as a demonstration that we have come to a different and more expansive understanding of ‘all sets’. But indefinite extensibility is philosophically puzzling: extant accounts are either metasemantically suspect in requiring mysterious mechanisms of domain expansion, or metaphysically suspect in requiring nonstandard assumptions about (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Modal Expansionism.Alexander Roberts - 2019 - Journal of Philosophical Logic 48 (6):1145-1170.
    There are various well-known paradoxes of modal recombination. This paper offers a solution to a variety of such paradoxes in the form of a new conception of metaphysical modality. On the proposed conception, metaphysical modality exhibits a type of indefinite extensibility. Indeed, for any objective modality there will always be some further, broader objective modality; in other terms, modal space will always be open to expansion.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Fragmented Truth.Andy Demfree Yu - 2016 - Dissertation, University of Oxford
    This thesis comprises three main chapters—each comprising one relatively standalone paper. The unifying theme is fragmentalism about truth, which is the view that the predicate “true” either expresses distinct concepts or expresses distinct properties. -/- In Chapter 1, I provide a formal development of alethic pluralism. Pluralism is the view that there are distinct truth properties associated with distinct domains of subject matter, where a truth property satisfies certain truth-characterizing principles. On behalf of pluralists, I propose an account of logic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Dummett on Indefinite Extensibility.Øystein Linnebo - 2018 - Philosophical Issues 28 (1):196-220.
    Dummett’s notion of indefinite extensibility is influential but obscure. The notion figures centrally in an alternative Dummettian argument for intuitionistic logic and anti-realism, distinct from his more famous, meaning-theoretic arguments to the same effect. Drawing on ideas from Dummett, a precise analysis of indefinite extensibility is proposed. This analysis is used to reconstruct the poorly understood alternative argument. The plausibility of the resulting argument is assessed.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Rigour, Proof and Soundness.Oliver M. W. Tatton-Brown - 2020 - Dissertation, University of Bristol
    The initial motivating question for this thesis is what the standard of rigour in modern mathematics amounts to: what makes a proof rigorous, or fail to be rigorous? How is this judged? A new account of rigour is put forward, aiming to go some way to answering these questions. Some benefits of the norm of rigour on this account are discussed. The account is contrasted with other remarks that have been made about mathematical proof and its workings, and is tested (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Replies to King, deRosset and Kment.Timothy Williamson - 2016 - Analysis 76 (2):201-222.
    Download  
     
    Export citation  
     
    Bookmark   2 citations