Switch to: References

Add citations

You must login to add citations.
  1. A Theory of Truthmaker Content I: Conjunction, Disjunction and Negation.Kit Fine - 2017 - Journal of Philosophical Logic 46 (6):625-674.
    I develop a basic theory of content within the framework of truthmaker semantics and, in the second part, consider some of the applications to subject matter, common content, logical subtraction and ground.
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Truth and Falsehood: An Inquiry Into Generalized Logical Values.Yaroslav Shramko & Heinrich Wansing - 2011 - Dordrecht, Netherland: Springer.
    The book presents a thoroughly elaborated logical theory of generalized truth-values understood as subsets of some established set of truth values. After elucidating the importance of the very notion of a truth value in logic and philosophy, we examine some possible ways of generalizing this notion. The useful four-valued logic of first-degree entailment by Nuel Belnap and the notion of a bilattice constitute the basis for further generalizations. By doing so we elaborate the idea of a multilattice, and most notably, (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Some Useful 16-Valued Logics: How a Computer Network Should Think.Yaroslav Shramko & Heinrich Wansing - 2005 - Journal of Philosophical Logic 34 (2):121-153.
    In Belnap's useful 4-valued logic, the set 2 = {T, F} of classical truth values is generalized to the set 4 = ������(2) = {Ø, {T}, {F}, {T, F}}. In the present paper, we argue in favor of extending this process to the set 16 = ᵍ (4) (and beyond). It turns out that this generalization is well-motivated and leads from the bilattice FOUR₂ with an information and a truth-and-falsity ordering to another algebraic structure, namely the trilattice SIXTEEN₃ with an (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Kleene's three valued logics and their children.Melvin Fitting - unknown
    Kleene’s strong three-valued logic extends naturally to a four-valued logic proposed by Belnap. We introduce a guard connective into Belnap’s logic and consider a few of its properties. Then we show that by using it four-valued analogs of Kleene’s weak three-valued logic, and the asymmetric logic of Lisp are also available. We propose an extension of these ideas to the family of distributive bilattices. Finally we show that for bilinear bilattices the extensions do not produce any new equivalences.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • The value of the four values.Ofer Arieli & Arnon Avron - 1998 - Artificial Intelligence 102 (1):97-141.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Bilattices are nice things.Melvin Fitting - 2008 - In Thomas Bolander (ed.), Self-reference. Center for the Study of Language and Inf.
    One approach to the paradoxes of self-referential languages is to allow some sentences to lack a truth value (or to have more than one). Then assigning truth values where possible becomes a fixpoint construction and, following Kripke, this is usually carried out over a partially ordered family of three-valued truth-value assignments. Some years ago Matt Ginsberg introduced the notion of bilattice, with applications to artificial intelligence in mind. Bilattices generalize the structure Kripke used in a very natural way, while making (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Inconsistency without Contradiction.Achille C. Varzi - 1997 - Notre Dame Journal of Formal Logic 38 (4):621-639.
    David Lewis has argued that impossible worlds are nonsense: if there were such worlds, one would have to distinguish between the truths about their contradictory goings-on and contradictory falsehoods about them; and this--Lewis argues--is preposterous. In this paper I examine a way of resisting this argument by giving up the assumption that ‘in so-and-so world’ is a restricting modifier which passes through the truth-functional connectives The outcome is a sort of subvaluational semantics which makes a contradiction ‘A & ~A’ false (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Identity and Aboutness.Benjamin Brast-McKie - 2021 - Journal of Philosophical Logic 50 (6):1471-1503.
    This paper develops a theory of propositional identity which distinguishes necessarily equivalent propositions that differ in subject-matter. Rather than forming a Boolean lattice as in extensional and intensional semantic theories, the space of propositions forms a non-interlaced bilattice. After motivating a departure from tradition by way of a number of plausible principles for subject-matter, I will provide a Finean state semantics for a novel theory of propositions, presenting arguments against the convexity and nonvacuity constraints which Fine (2016, 2017a,b) introduces. I (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Fixpoint Semantics for Logic Programming A Survey.Melvin Fitting - unknown
    The variety of semantical approaches that have been invented for logic programs is quite broad, drawing on classical and many-valued logic, lattice theory, game theory, and topology. One source of this richness is the inherent non-monotonicity of its negation, something that does not have close parallels with the machinery of other programming paradigms. Nonetheless, much of the work on logic programming semantics seems to exist side by side with similar work done for imperative and functional programming, with relatively minimal contact (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The Logic of Lexical Connectives.Giorgio Sbardolini - 2023 - Journal of Philosophical Logic 52 (5):1327-1353.
    Natural language does not express all connectives definable in classical logic as simple lexical items. Coordination in English is expressed by conjunction and, disjunction or, and negated disjunction nor. Other languages pattern similarly. Non-lexicalized connectives are typically expressed compositionally: in English, negated conjunction is typically expressed by combining negation and conjunction (not both). This is surprising: if $$\wedge $$ ∧ and $$\vee $$ ∨ are duals, and the negation of the latter can be expressed lexically (nor), why not the negation (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Knowledge, Uncertainty and Ignorance in Logic: Bilattices and beyond.George Gargov - 1999 - Journal of Applied Non-Classical Logics 9 (2-3):195-283.
    ABSTRACT In the paper we present a survey of some approaches to the semantics of many-valued propositional systems. These approaches are inspired on one hand by classical problems in the investigations of logical aspects of epistemic activity: knowledge and truth, contradictions, beliefs, reliability of data, etc. On the other hand they reflect contemporary concerns of researchers in Artificial Intelligence (and Cognitive Science in general) with inferences drawn from imperfect information, even from total ignorance. We treat the mathematical apparatus that has (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Note on 'Normalisation for Bilateral Classical Logic with some Philosophical Remarks'.Nils Kürbis - 2021 - Journal of Applied Logics 7 (8):2259-2261.
    This brief note corrects an error in one of the reduction steps in my paper 'Normalisation for Bilateral Classical Logic with some Philosophical Remarks' published in the Journal of Applied Logics 8/2 (2021): 531-556.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Non-deterministic View on Non-classical Negations.Arnon Avron - 2005 - Studia Logica 80 (2-3):159-194.
    We investigate two large families of logics, differing from each other by the treatment of negation. The logics in one of them are obtained from the positive fragment of classical logic (with or without a propositional constant ff for “the false”) by adding various standard Gentzen-type rules for negation. The logics in the other family are similarly obtained from LJ+, the positive fragment of intuitionistic logic (again, with or without ff). For all the systems, we provide simple semantics which is (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Supervaluationism and Paraconsistency.Achille C. Varzi - 2000 - In Diderik Batens, Chris Mortensen, Graham Priest & Jean Paul Van Bendegem (eds.), Frontiers in Paraconsistent Logic. Research Studies Press. pp. 279–297.
    Since its first appearance in 1966, the notion of a supervaluation has been regarded by many as a powerful tool for dealing with semantic gaps. Only recently, however, applications to semantic gluts have also been considered. In previous work I proposed a general framework exploiting the intrinsic gap/glut duality. Here I also examine an alternative account where gaps and gluts are treated on a par: although they reflect opposite situations, the semantic upshot is the same in both cases--the value of (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Family of Stable Models.Melvin Fitting - unknown
    The family of all stable models for a logic program has a surprisingly simple overall structure, once two naturally occurring orderings are made explicit. In a so-called knowledge ordering based on degree of definedness, every logic program P has a smallest stable model, sk P — it is the well-founded model. There is also a dual largest stable model, S k P, which has not been considered before. There is another ordering based on degree of truth. Taking the meet and (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Representation of interlaced trilattices.Umberto Rivieccio - 2013 - Journal of Applied Logic 11 (2):174-189.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Evidential bilattice logic and lexical inference.Andreas Schöter - 1996 - Journal of Logic, Language and Information 5 (1):65-105.
    This paper presents an information-based logic that is applied to the analysis of entailment, implicature and presupposition in natural language. The logic is very fine-grained and is able to make distinctions that are outside the scope of classical logic. It is independently motivated by certain properties of natural human reasoning, namely partiality, paraconsistency, relevance, and defeasibility: once these are accounted for, the data on implicature and presupposition comes quite naturally.The logic is based on the family of semantic spaces known as (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A general framework for product representations: bilattices and beyond.L. M. Cabrer & H. A. Priestley - 2015 - Logic Journal of the IGPL 23 (5):816-841.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A theory of truth that prefers falsehood.Melvin Fitting - 1997 - Journal of Philosophical Logic 26 (5):477-500.
    We introduce a subclass of Kripke's fixed points in which falsehood is the preferred truth value. In all of these the truthteller evaluates to false, while the liar evaluates to undefined (or overdefined). The mathematical structure of this family of fixed points is investigated and is shown to have many nice features. It is noted that a similar class of fixed points, preferring truth, can also be studied. The notion of intrinsic is shown to relativize to these two subclasses. The (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Algebras of intervals and a logic of conditional assertions.Peter Milne - 2004 - Journal of Philosophical Logic 33 (5):497-548.
    Intervals in boolean algebras enter into the study of conditional assertions (or events) in two ways: directly, either from intuitive arguments or from Goodman, Nguyen and Walker's representation theorem, as suitable mathematical entities to bear conditional probabilities, or indirectly, via a representation theorem for the family of algebras associated with de Finetti's three-valued logic of conditional assertions/events. Further representation theorems forge a connection with rough sets. The representation theorems and an equivalent of the boolean prime ideal theorem yield an algebraic (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Foreword: Three-valued logics and their applications.Pablo Cobreros, Paul Égré, David Ripley & Robert van Rooij - 2014 - Journal of Applied Non-Classical Logics 24 (1-2):1-11.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Geometry of Negation.Massimo Warglien & Achille C. Varzi - 2003 - Journal of Applied Non-Classical Logics 13 (1):9-19.
    There are two natural ways of thinking about negation: (i) as a form of complementation and (ii) as an operation of reversal, or inversion (to deny that p is to say that things are “the other way around”). A variety of techniques exist to model conception (i), from Euler and Venn diagrams to Boolean algebras. Conception (ii), by contrast, has not been given comparable attention. In this note we outline a twofold geometric proposal, where the inversion metaphor is understoood as (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Sweet SIXTEEN: Automation via Embedding into Classical Higher-Order Logic.Alexander Steen & Christoph Benzmüller - 2016 - Logic and Logical Philosophy 25 (4):535-554.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Double Negation as Minimal Negation.Satoru Niki - 2023 - Journal of Logic, Language and Information 32 (5):861-886.
    N. Kamide introduced a pair of classical and constructive logics, each with a peculiar type of negation: its double negation behaves as classical and intuitionistic negation, respectively. A consequence of this is that the systems prove contradictions but are non-trivial. The present paper aims at giving insights into this phenomenon by investigating subsystems of Kamide’s logics, with a focus on a system in which the double negation behaves as the negation of minimal logic. We establish the negation inconsistency of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Order independent and persistent typed default unification.Alex Lascarides, Ted Briscoe, Nicholas Asher & Ann Copestake - 1996 - Linguistics and Philosophy 19 (1):1 - 90.
    We define an order independent version of default unification on typed feature structures. The operation is one where default information in a feature structure typed with a more specific type, will override default information in a feature structure typed with a more general type, where specificity is defined by the subtyping relation in the type hierarchy. The operation is also able to handle feature structures where reentrancies are default. We provide a formal semantics, prove order independence and demonstrate the utility (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Propositional and predicate logics of incomplete information.Marco Console, Paolo Guagliardo & Leonid Libkin - 2022 - Artificial Intelligence 302 (C):103603.
    Download  
     
    Export citation  
     
    Bookmark  
  • Reasoning with different levels of uncertainty.Ofer Arieli - 2003 - Journal of Applied Non-Classical Logics 13 (3):317-343.
    We introduce a family of preferential logics that are useful for handling information with different levels of uncertainty. The corresponding consequence relations are nonmonotonic, paraconsistent, adaptive, and rational. It is also shown that the formalisms in this family can be embedded in corresponding four-valued logics with at most three uncertainty levels, and that reasoning with these logics can be simulated by algorithms for processing circumscriptive theories, such as DLS and SCAN.
    Download  
     
    Export citation  
     
    Bookmark  
  • An Approach to Uncertainty via Sets of Truth Values.George Gargov - 1995 - Notre Dame Journal of Formal Logic 36 (2):235-268.
    An approach to the treatment of inference in the presence of uncertain truth values is described, based on representing uncertainties by sets of ordinary (certain) truth values. Both the algebraic and the logical aspects are studied for a variety of lattices used as truth value spaces in the domain of many-valued logic.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Natural implicative expansions of variants of Kleene's strong 3-valued logic with Gödel-type and dual Gödel-type negation.Gemma Robles & José M. Méndez - 2021 - Journal of Applied Non-Classical Logics 31 (2):130-153.
    Let MK3 I and MK3 II be Kleene's strong 3-valued matrix with only one and two designated values, respectively. Next, let MK3 G be defined exactly as MK3 I, except th...
    Download  
     
    Export citation  
     
    Bookmark  
  • Contradictory Information: Too Much of a Good Thing. [REVIEW]J. Michael Dunn - 2010 - Journal of Philosophical Logic 39 (4):425 - 452.
    Both I and Belnap, motivated the "Belnap-Dunn 4-valued Logic" by talk of the reasoner being simply "told true" (T) and simply "told false" (F), which leaves the options of being neither "told true" nor "told false" (N), and being both "told true" and "told false" (B). Belnap motivated these notions by consideration of unstructured databases that allow for negative information as well as positive information (even when they conflict). We now experience this on a daily basis with the Web. But (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations