Switch to: References

Add citations

You must login to add citations.
  1. The gödel paradox and Wittgenstein's reasons.Francesco Berto - 2009 - Philosophia Mathematica 17 (2):208-219.
    An interpretation of Wittgenstein’s much criticized remarks on Gödel’s First Incompleteness Theorem is provided in the light of paraconsistent arithmetic: in taking Gödel’s proof as a paradoxical derivation, Wittgenstein was drawing the consequences of his deliberate rejection of the standard distinction between theory and metatheory. The reasoning behind the proof of the truth of the Gödel sentence is then performed within the formal system itself, which turns out to be inconsistent. It is shown that the features of paraconsistent arithmetics match (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)The Significance of Evidence-based Reasoning in Mathematics, Mathematics Education, Philosophy, and the Natural Sciences (2nd edition).Bhupinder Singh Anand - 2024 - Mumbai: DBA Publishing (Second Edition).
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Wittgenstein on Proof and Concept-Formation.Sorin Bangu - forthcoming - Philosophical Quarterly.
    In his Remarks on the Foundations of Mathematics, Wittgenstein claims, puzzlingly, that ‘the proof creates a new concept’ (RFM III-41). This paper aims to contribute to clarifying this idea, and to showing how it marks a major break with the traditional conception of proof. Moreover, since the most natural way to understand his claim is open to criticism, a secondary goal of what follows is to offer an interpretation of it that neutralizes the objection. The discussion proceeds by analysing a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Rules to Infinity: The Normative Role of Mathematics in Scientific Explanation.Mark Povich - 2024 - Oxford University Press USA.
    One central aim of science is to provide explanations of natural phenomena. What role(s) does mathematics play in achieving this aim? How does mathematics contribute to the explanatory power of science? Rules to Infinity defends the thesis, common though perhaps inchoate among many members of the Vienna Circle, that mathematics contributes to the explanatory power of science by expressing conceptual rules, rules which allow the transformation of empirical descriptions. Mathematics should not be thought of as describing, in any substantive sense, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Intuitive Skill.Sebastian Sunday Grève - 2023 - Philosophia 51 (3):1677-1700.
    This article presents a theory of intuitive skill in terms of three constitutive elements: getting things right intuitively, not getting things wrong intuitively, and sceptical ability. The theory draws on work from a range of psychological approaches to intuition and expertise in various domains, including arts, business, science, and sport. It provides a general framework that will help to further integrate research on these topics, for example building bridges between practical and theoretical domains or between such apparently conflicting methodologies as (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Rethinking Logic: Logic in Relation to Mathematics, Evolution, and Method.Carlo Cellucci - 2013 - Dordrecht, Netherland: Springer.
    This volume examines the limitations of mathematical logic and proposes a new approach to logic intended to overcome them. To this end, the book compares mathematical logic with earlier views of logic, both in the ancient and in the modern age, including those of Plato, Aristotle, Bacon, Descartes, Leibniz, and Kant. From the comparison it is apparent that a basic limitation of mathematical logic is that it narrows down the scope of logic confining it to the study of deduction, without (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Wittgenstein’s ‘notorious paragraph’ about the Gödel Theorem.Timm Lampert - 2006 - In Lampert Timm (ed.), Contributions of the Austrian Wittgenstein Societ. pp. 168-171.
    In §8 of Remarks on the Foundations of Mathematics (RFM), Appendix 3 Wittgenstein imagines what conclusions would have to be drawn if the Gödel formula P or ¬P would be derivable in PM. In this case, he says, one has to conclude that the interpretation of P as “P is unprovable” must be given up. This “notorious paragraph” has heated up a debate on whether the point Wittgenstein has to make is one of “great philosophical interest” revealing “remarkable insight” in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Wittgenstein on Gödelian 'Incompleteness', Proofs and Mathematical Practice: Reading Remarks on the Foundations of Mathematics, Part I, Appendix III, Carefully.Wolfgang Kienzler & Sebastian Sunday Grève - 2016 - In Sebastian Sunday Grève & Jakub Mácha (eds.), Wittgenstein and the Creativity of Language. Palgrave Macmillan. pp. 76-116.
    We argue that Wittgenstein’s philosophical perspective on Gödel’s most famous theorem is even more radical than has commonly been assumed. Wittgenstein shows in detail that there is no way that the Gödelian construct of a string of signs could be assigned a useful function within (ordinary) mathematics. — The focus is on Appendix III to Part I of Remarks on the Foundations of Mathematics. The present reading highlights the exceptional importance of this particular set of remarks and, more specifically, emphasises (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Wittgenstein on Incompleteness Makes Paraconsistent Sense.Francesco Berto - 2012 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Dordrecht, Netherland: Springer. pp. 257--276.
    I provide an interpretation of Wittgenstein's much criticized remarks on Gödel's First Incompleteness Theorem in the light of paraconsistent arithmetics: in taking Gödel's proof as a paradoxical derivation, Wittgenstein was right, given his deliberate rejection of the standard distinction between theory and metatheory. The reasoning behind the proof of the truth of the Gödel sentence is then performed within the formal system itself, which turns out to be inconsistent. I show that the models of paraconsistent arithmetics (obtained via the Meyer-Mortensen (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Gödel's and Other Paradoxes.Hartley Slater - 2015 - Philosophical Investigations 39 (4):353-361.
    Francesco Berto has recently written “The Gödel Paradox and Wittgenstein's Reasons,” about a paradox first formulated by Graham Priest in 1971. The major reason for disagreeing with Berto's conclusions concerns his elucidation of Wittgenstein's understanding of Gödel's theorems. Seemingly, Wittgenstein was some kind of proto-paraconsistentist. Priest himself has also, though in a different way, tried to tar Wittgenstein with the same brush. But the resolution of other paradoxes is intimately linked with the resolution of the Gödel Paradox, and with understanding (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Derrida and Formal Logic: Formalising the Undecidable.Paul Livingston - 2010 - Derrida Today 3 (2):221-239.
    Derrida's key concepts or pseudo-concepts of différance, the trace, and the undecidable suggest analogies to some of the most significant results of formal, symbolic logic and metalogic. As early as 1970, Derrida himself pointed out an analogy between his use of ‘undecidable’ and Gödel's incompleteness theorems, which demonstrate the existence, in any sufficiently complex and consistent system, of propositions which cannot be proven or disproven (i.e., decided) within that system itself. More recently, Graham Priest has interpreted différance as an instance (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Wittgenstein and Gödel: An Attempt to Make ‘Wittgenstein’s Objection’ Reasonable†.Timm Lampert - 2018 - Philosophia Mathematica 26 (3):324-345.
    According to some scholars, such as Rodych and Steiner, Wittgenstein objects to Gödel’s undecidability proof of his formula $$G$$, arguing that given a proof of $$G$$, one could relinquish the meta-mathematical interpretation of $$G$$ instead of relinquishing the assumption that Principia Mathematica is correct. Most scholars agree that such an objection, be it Wittgenstein’s or not, rests on an inadequate understanding of Gödel’s proof. In this paper, I argue that there is a possible reading of such an objection that is, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Prose versus proof: Wittgenstein on gödel, Tarski and Truth.Juliet Floyd - 2001 - Philosophia Mathematica 9 (3):280-307.
    A survey of current evidence available concerning Wittgenstein's attitude toward, and knowledge of, Gödel's first incompleteness theorem, including his discussions with Turing, Watson and others in 1937–1939, and later testimony of Goodstein and Kreisel; 2) Discussion of the philosophical and historical importance of Wittgenstein's attitude toward Gödel's and other theorems in mathematical logic, contrasting this attitude with that of, e.g., Penrose; 3) Replies to an instructive criticism of my 1995 paper by Mark Steiner which assesses the importance of Tarski's semantical (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Aspects of the Real Numbers: Putnam, Wittgenstein, and Nonextensionalism.Juliet Floyd - 2020 - The Monist 103 (4):427-441.
    I defend Putnam’s modal structuralist view of mathematics but reject his claims that Wittgenstein’s remarks on Dedekind, Cantor, and set theory are verificationist. Putnam’s “realistic realism” showcases the plasticity of our “fitting” words to the world. The applications of this—in philosophy of language, mind, logic, and philosophy of computation—are robust. I defend Wittgenstein’s nonextensionalist understanding of the real numbers, showing how it fits Putnam’s view. Nonextensionalism and extensionalism about the real numbers are mathematically, philosophically, and logically robust, but the two (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The face of perception.Charles S. Travis - 2005 - In Hilary Putnam (Contemporary Philosophy in Focus). Cambridge: Cambridge University Press.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • 3 Wittgenstein and the Inexpressible.Juliet Floyd - 2007 - In Alice Crary (ed.), Wittgenstein and the Moral Life: Essays in Honor of Cora Diamond. MIT Press. pp. 177-234.
    Download  
     
    Export citation  
     
    Bookmark   10 citations