Switch to: References

Add citations

You must login to add citations.
  1. Does Homotopy Type Theory Provide a Foundation for Mathematics?James Ladyman & Stuart Presnell - 2016 - British Journal for the Philosophy of Science:axw006.
    Homotopy Type Theory is a putative new foundation for mathematics grounded in constructive intensional type theory that offers an alternative to the foundations provided by ZFC set theory and category theory. This article explains and motivates an account of how to define, justify, and think about HoTT in a way that is self-contained, and argues that, so construed, it is a candidate for being an autonomous foundation for mathematics. We first consider various questions that a foundation for mathematics might be (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A Note on Gabriel Uzquiano’s “Varieties of Indefinite Extensibility”.Simon Hewitt - unknown - Notre Dame Journal of Formal Logic 59 (3):455-459.
    It is argued that Gabriel Uzquiano's approach to set-theoretic indefinite extensibility is a version of in rebus structuralism, and therefore suffers from a vacuity problem.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Importance of Developing a Foundation for Naive Category Theory.Marcoen J. T. F. Cabbolet - 2015 - Thought: A Journal of Philosophy 4 (4):237-242.
    Recently Feferman has outlined a program for the development of a foundation for naive category theory. While Ernst has shown that the resulting axiomatic system is still inconsistent, the purpose of this note is to show that nevertheless some foundation has to be developed before naive category theory can replace axiomatic set theory as a foundational theory for mathematics. It is argued that in naive category theory currently a ‘cookbook recipe’ is used for constructing categories, and it is explicitly shown (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Identity in Homotopy Type Theory, Part I: The Justification of Path Induction.James Ladyman & Stuart Presnell - 2015 - Philosophia Mathematica 23 (3):386-406.
    Homotopy Type Theory is a proposed new language and foundation for mathematics, combining algebraic topology with logic. An important rule for the treatment of identity in HoTT is path induction, which is commonly explained by appeal to the homotopy interpretation of the theory's types, tokens, and identities as spaces, points, and paths. However, if HoTT is to be an autonomous foundation then such an interpretation cannot play a fundamental role. In this paper we give a derivation of path induction, motivated (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Categories, sets and the nature of mathematical entities.Jean-Pierre Marquis - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 181--192.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In defense (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Categorical harmony and path induction.Patrick Walsh - 2017 - Review of Symbolic Logic 10 (2):301-321.
    This paper responds to recent work in the philosophy of Homotopy Type Theory by James Ladyman and Stuart Presnell. They consider one of the rules for identity, path induction, and justify it along ‘pre-mathematical’ lines. I give an alternate justification based on the philosophical framework of inferentialism. Accordingly, I construct a notion of harmony that allows the inferentialist to say when a connective or concept is meaning-bearing and this conception unifies most of the prominent conceptions of harmony through category theory. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Soft Axiomatisation: John von Neumann on Method and von Neumann's Method in the Physical Sciences.Miklós Rédei & Michael Stöltzner - 2006 - In Emily Carson & Renate Huber (eds.), Intuition and the Axiomatic Method. Springer. pp. 235--249.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Category theory: The language of mathematics.Elaine Landry - 1999 - Philosophy of Science 66 (3):27.
    In this paper I argue that category theory ought to be seen as providing the language for mathematical discourse. Against foundational approaches, I argue that there is no need to reduce either the content or structure of mathematical concepts and theories to the constituents of either the universe of sets or the category of categories. I assign category theory the role of organizing what we say about the content and structure of both mathematical concepts and theories. Insofar, then, as the (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Categorial modal realism.Tyler D. P. Brunet - 2023 - Synthese 201 (2):1-29.
    The current conception of the plurality of worlds is founded on a set theoretic understanding of possibilia. This paper provides an alternative category theoretic conception and argues that it is at least as serviceable for our understanding of possibilia. In addition to or instead of the notion of possibilia conceived as possible objects or possible individuals, this alternative to set theoretic modal realism requires the notion of possible morphisms, conceived as possible changes, processes or transformations. To support this alternative conception (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Intuition, Objectivity and Structure.Elaine Landry - 2006 - In Emily Carson & Renate Huber (eds.), Intuition and the Axiomatic Method. Springer. pp. 133--153.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logic, Mathematics, Philosophy, Vintage Enthusiasms: Essays in Honour of John L. Bell.David DeVidi, Michael Hallett & Peter Clark (eds.) - 2011 - Dordrecht, Netherland: Springer.
    The volume includes twenty-five research papers presented as gifts to John L. Bell to celebrate his 60th birthday by colleagues, former students, friends and admirers. Like Bell’s own work, the contributions cross boundaries into several inter-related fields. The contributions are new work by highly respected figures, several of whom are among the key figures in their fields. Some examples: in foundations of maths and logic ; analytical philosophy, philosophy of science, philosophy of mathematics and decision theory and foundations of economics. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Louis Joly as a Platonist Painter?Roger Pouivet - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 337--341.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today.Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.) - 2006 - Dordrecht, Netherland: Springer.
    This book explores the interplay between logic and science, describing new trends, new issues and potential research developments.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logicism, structuralism and objectivity.Elaine Landry - 2001 - Topoi 20 (1):79-95.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Structuralism without structures.Hellman Geoffrey - 1996 - Philosophia Mathematica 4 (2):100-123.
    Recent technical developments in the logic of nominalism make it possible to improve and extend significantly the approach to mathematics developed in Mathematics without Numbers. After reviewing the intuitive ideas behind structuralism in general, the modal-structuralist approach as potentially class-free is contrasted broadly with other leading approaches. The machinery of nominalistic ordered pairing (Burgess-Hazen-Lewis) and plural quantification (Boolos) can then be utilized to extend the core systems of modal-structural arithmetic and analysis respectively to full, classical, polyadic third- and fourthorder number (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • What is categorical structuralism?Geoffrey Hellman - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 151--161.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Generic Structures.Leon Horsten - 2019 - Philosophia Mathematica 27 (3):362-380.
    In this article ideas from Kit Fine’s theory of arbitrary objects are applied to questions regarding mathematical structuralism. I discuss how sui generis mathematical structures can be viewed as generic systems of mathematical objects, where mathematical objects are conceived of as arbitrary objects in Fine’s sense.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Category theory as a framework for an in re interpretation of mathematical structuralism.Elaine Landry - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 163--179.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • .[author unknown] - unknown
    Download  
     
    Export citation  
     
    Bookmark