Switch to: References

Citations of:

Logical operations

Journal of Philosophical Logic 25 (6):567 - 580 (1996)

Add citations

You must login to add citations.
  1. Is deflationism self-defeating?Guanglong Luo - 2024 - Asian Journal of Philosophy 3 (2):1-19.
    According to deflationism, truth is insubstantial. Edwards (2018) argues that the deflationist thesis of insubstantiality is incoherent, regardless of how it is characterized. By clarifying the deflationist concepts of reference and truth (and their relations) and addressing the distinction between substantial properties and insubstantial properties within the deflationist framework, we will argue that Edwards’s self-defeating argument is problematic and ultimately unconvincing.
    Download  
     
    Export citation  
     
    Bookmark  
  • Logicality in natural language.Gil Sagi - 2024 - Philosophical Studies 181 (5):1067-1085.
    Is there a relation of logical consequence in natural language? Logicality, in the philosophical literature, has been conceived of as a restrictive phenomenon that is at odds with the unbridled richness and complexity of natural language. This article claims that there is a relation of logical consequence in natural language, and moreover, that it is the subject matter of the bulk of current theories of formal semantics. I employ the framework of _semantic constraints_ (Sagi in Log Anal 57(227):259–276, 2014), which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantification in the Interpretational Theory of Validity.Marco Grossi - 2023 - Synthese 202 (3):1-21.
    According to the interpretational theory of logical validity (IR), logical validity is preservation of truth in all interpretations compatible with the intended meaning of logical expressions. IR suffers from a seemingly defeating objection, the so-called cardinality problem: any instance of the statement ‘There are n things’ is true under all interpretations, since it can be written down using only logical expressions that are not to be reinterpreted; yet ‘There are n things’ is not logically true. I argue that the cardinality (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Metaphysics of Opacity.Catharine Diehl & Beau Madison Mount - 2023 - Philosophers' Imprint 23 (1).
    This paper examines the logical and metaphysical consequences of denying Leibniz's Law, the principle that if t1= t2, then φ(t1) if and only if φ(t2). Recently, Caie, Goodman, and Lederman (2020) and Bacon and Russell (2019) have proposed sophisticated logical systems permitting violations of Leibniz's Law. We show that their systems conflict with widely held, attractive principles concerning the metaphysics of individuals. Only by adopting a highly revisionary picture, on which there is no finest-grained equivalence relation, can a well-motivated metaphysics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Formalization of Arguments.Robert Michels - 2020 - Dialectica 74 (2).
    The purpose of this introduction is to give a rough overview of the discussion of the formalization of arguments, focusing on deductive arguments. The discussion is structured around four important junctions: i) the notion of support, which captures the relation between the conclusion and premises of an argument, ii) the choice of a formal language into which the argument is translated in order to make it amenable to evaluation via formal methods, iii) the question of quality criteria for such formalizations, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Collective Abstraction.Jon Erling Litland - 2022 - Philosophical Review 131 (4):453-497.
    This paper develops a novel theory of abstraction—what we call collective abstraction. The theory solves a notorious problem for noneliminative structuralism. The noneliminative structuralist holds that in addition to various isomorphic systems there is a pure structure that can be abstracted from each of these systems; but existing accounts of abstraction fail for nonrigid systems like the complex numbers. The problem with the existing accounts is that they attempt to define a unique abstraction operation. The theory of collective abstraction instead (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logical Realism: A Tale of Two Theories.Gila Sher - 2024 - In Sophia Arbeiter & Juliette Kennedy (eds.), The Philosophy of Penelope Maddy. Springer.
    The paper compares two theories of the nature of logic: Penelope Maddy's and my own. The two theories share a significant element: they both view logic as grounded not just in the mind (language, concepts, conventions, etc.), but also, and crucially, in the world. But the two theories differ in significant ways as well. Most distinctly, one is an anti-holist, "austere naturalist" theory while the other is a non-naturalist "foundational-holistic" theory. This methodological difference affects their questions, goals, orientations, the scope (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Logicality of Truth.Kentaro Fujimoto - 2022 - Philosophical Quarterly 72 (4):853-874.
    Deflationism about truth describes truth as a logical notion. In the present paper, I explore the implication of the alleged logicality of truth from the perspective of axiomatic theories of truth, and argue that the deflationist doctrine of the logicality of truth gives rise to two types of self-undermining arguments against deflationism, which I call the conservativeness argument from logicality and the topic-neutrality argument.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Categoricity by convention.Julien Murzi & Brett Topey - 2021 - Philosophical Studies 178 (10):3391-3420.
    On a widespread naturalist view, the meanings of mathematical terms are determined, and can only be determined, by the way we use mathematical language—in particular, by the basic mathematical principles we’re disposed to accept. But it’s mysterious how this can be so, since, as is well known, minimally strong first-order theories are non-categorical and so are compatible with countless non-isomorphic interpretations. As for second-order theories: though they typically enjoy categoricity results—for instance, Dedekind’s categoricity theorem for second-order and Zermelo’s quasi-categoricity theorem (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Invariance as a basis for necessity and laws.Gila Sher - 2021 - Philosophical Studies 178 (12):3945-3974.
    Many philosophers are baffled by necessity. Humeans, in particular, are deeply disturbed by the idea of necessary laws of nature. In this paper I offer a systematic yet down to earth explanation of necessity and laws in terms of invariance. The type of invariance I employ for this purpose generalizes an invariance used in meta-logic. The main idea is that properties and relations in general have certain degrees of invariance, and some properties/relations have a stronger degree of invariance than others. (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Logicality of Language: Contextualism versus Semantic Minimalism.Guillermo Del Pinal - 2022 - Mind 131 (522):381-427.
    The logicality of language is the hypothesis that the language system has access to a ‘natural’ logic that can identify and filter out as unacceptable expressions that have trivial meanings—that is, that are true/false in all possible worlds or situations in which they are defined. This hypothesis helps explain otherwise puzzling patterns concerning the distribution of various functional terms and phrases. Despite its promise, logicality vastly over-generates unacceptability assignments. Most solutions to this problem rest on specific stipulations about the properties (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Mystery of the Fifth Logical Notion (Alice in the Wonderful Land of Logical Notions).Jean-Yves Beziau - 2020 - Studia Humana 9 (3-4):19-36.
    We discuss a theory presented in a posthumous paper by Alfred Tarski entitled “What are logical notions?”. Although the theory of these logical notions is something outside of the main stream of logic, not presented in logic textbooks, it is a very interesting theory and can easily be understood by anybody, especially studying the simplest case of the four basic logical notions. This is what we are doing here, as well as introducing a challenging fifth logical notion. We first recall (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Shadows of Syntax: Revitalizing Logical and Mathematical Conventionalism.Jared Warren - 2020 - New York, USA: Oxford University Press.
    What is the source of logical and mathematical truth? This book revitalizes conventionalism as an answer to this question. Conventionalism takes logical and mathematical truth to have their source in linguistic conventions. This was an extremely popular view in the early 20th century, but it was never worked out in detail and is now almost universally rejected in mainstream philosophical circles. Shadows of Syntax is the first book-length treatment and defense of a combined conventionalist theory of logic and mathematics. It (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • The Many and the One: A Philosophical Study of Plural Logic.Salvatore Florio & Øystein Linnebo - 2021 - Oxford, England: Oxford University Press.
    Plural expressions found in natural languages allow us to talk about many objects simultaneously. Plural logic — a logical system that takes plurals at face value — has seen a surge of interest in recent years. This book explores its broader significance for philosophy, logic, and linguistics. What can plural logic do for us? Are the bold claims made on its behalf correct? After introducing plural logic and its main applications, the book provides a systematic analysis of the relation between (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)Invariance and Logicality in Perspective.Gila Sher - 2021 - In Gil Sagi & Jack Woods (eds.), The Semantic Conception of Logic : Essays on Consequence, Invariance, and Meaning. New York, NY: Cambridge University Press. pp. 13-34.
    Although the invariance criterion of logicality first emerged as a criterion of a purely mathematical interest, it has developed into a criterion of considerable linguistic and philosophical interest. In this paper I compare two different perspectives on this criterion. The first is the perspective of natural language. Here, the invariance criterion is measured by its success in capturing our linguistic intuitions about logicality and explaining our logical behavior in natural-linguistic settings. The second perspective is more theoretical. Here, the invariance criterion (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Structural Indeterminacy.Alessandro Torza - 2020 - Philosophy and Phenomenological Research 101 (2):365-382.
    The threat of ontological deflationism (the view that disagreement about what there is can be non‐substantive) is averted by appealing to realism about fundamental structure—or so tells us Ted Sider. In this paper, the notion of structural indeterminacy is introduced as a particular case of metaphysical indeterminacy; then it is argued that structural indeterminacy is not only compatible with a metaphysics of fundamental structure, but it can even safeguard it from a crucial objection; finally, it is shown that, if there (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Burali-Forti as a Purely Logical Paradox.Graham Leach-Krouse - 2019 - Journal of Philosophical Logic 48 (5):885-908.
    Russell’s paradox is purely logical in the following sense: a contradiction can be formally deduced from the proposition that there is a set of all non-self-membered sets, in pure first-order logic—the first-order logical form of this proposition is inconsistent. This explains why Russell’s paradox is portable—why versions of the paradox arise in contexts unrelated to set theory, from propositions with the same logical form as the claim that there is a set of all non-self-membered sets. Burali-Forti’s paradox, like Russell’s paradox, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ontological Pluralism and Notational Variance.Bruno Whittle - 2021 - Oxford Studies in Metaphysics 12:58-72.
    Ontological pluralism is the view that there are different ways to exist. It is a position with deep roots in the history of philosophy, and in which there has been a recent resurgence of interest. In contemporary presentations, it is stated in terms of fundamental languages: as the view that such languages contain more than one quantifier. For example, one ranging over abstract objects, and another over concrete ones. A natural worry, however, is that the languages proposed by the pluralist (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Propriedades Naturais e Mundos Possíveis.Renato Mendes Rocha - 2015 - Coleção XVI Encontro ANPOF.
    O objetivo geral da pesquisa da qual esse artigo faz parte é investigar o sistema metafísico que emerge dos trabalhos de David Lewis. Esse sistema pode ser decomposto em pelo menos duas teorias. A primeira nomeada como realismo modal genuíno (RMG) e a segunda como mosaico neo-humeano. O RMG é, sem dúvida, mais popular e defende a hipótese metafísica da existência de uma pluralidade de mundos possíveis. A principal razão em favor dessa hipótese é a sua aplicabilidade na discussão de (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ideology in a Desert Landscape.Alessandro Torza - 2017 - Philosophical Issues 27 (1):383-406.
    On one influential view, metaphysical fundamentality can be understood in terms of joint‐carving. Ted Sider has recently argued that (i) some first order quantifier is joint‐carving, and (ii) modal notions are not joint‐carving. After vindicating the theoretical indispensability of quantification against recent criticism, I will defend a logical result due to Arnold Koslow which implies that (i) and (ii) are incompatible. I will therefore consider an alternative understanding of Sider's metaphysics to the effect that (i) some first order quantifier is (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Invariance and Definability, with and without Equality.Denis Bonnay & Fredrik Engström - 2018 - Notre Dame Journal of Formal Logic 59 (1):109-133.
    The dual character of invariance under transformations and definability by some operations has been used in classical works by, for example, Galois and Klein. Following Tarski, philosophers of logic have claimed that logical notions themselves could be characterized in terms of invariance. In this article, we generalize a correspondence due to Krasner between invariance under groups of permutations and definability in L∞∞ so as to cover the cases that are of interest in the logicality debates, getting McGee’s theorem about quantifiers (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Hyperintensional Foundations of Mathematical Platonism.David Elohim - manuscript
    This paper aims to provide hyperintensional foundations for mathematical platonism. I examine Hale and Wright's (2009) objections to the merits and need, in the defense of mathematical platonism and its epistemology, of the thesis of Necessitism. In response to Hale and Wright's objections to the role of epistemic and metaphysical modalities in providing justification for both the truth of abstraction principles and the success of mathematical predicate reference, I examine the Necessitist commitments of the abundant conception of properties endorsed by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What Are Structural Properties?†.Johannes Korbmacher & Georg Schiemer - 2018 - Philosophia Mathematica 26 (3):295-323.
    Informally, structural properties of mathematical objects are usually characterized in one of two ways: either as properties expressible purely in terms of the primitive relations of mathematical theories, or as the properties that hold of all structurally similar mathematical objects. We present two formal explications corresponding to these two informal characterizations of structural properties. Based on this, we discuss the relation between the two explications. As will be shown, the two characterizations do not determine the same class of mathematical properties. (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Extensionality and logicality.Gil Sagi - 2017 - Synthese (Suppl 5):1-25.
    Tarski characterized logical notions as invariant under permutations of the domain. The outcome, according to Tarski, is that our logic, which is commonly said to be a logic of extension rather than intension, is not even a logic of extension—it is a logic of cardinality. In this paper, I make this idea precise. We look at a scale inspired by Ruth Barcan Marcus of various levels of meaning: extensions, intensions and hyperintensions. On this scale, the lower the level of meaning, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophical Problems of Foundations of Logic.Alexander S. Karpenko - 2014 - Studia Humana 3 (1):13-26.
    In the paper the following questions are discussed: What is logical consequence? What are logical constants? What is a logical system? What is logical pluralism? What is logic? In the conclusion, the main tendencies of development of modern logic are pointed out.
    Download  
     
    Export citation  
     
    Bookmark  
  • Logical Truth.Mario Gomez-Torrente - 2014 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Logical Quantifiers.Gila Sher - 2011 - In Gillian Russell & Delia Graff Fara (eds.), Routledge Companion to Philosophy of Language. New York, USA: Routledge. pp. 579-595.
    This chapter offers a logical, linguistic, and philosophical account of modern quantification theory. Contrasting the standard approach to quantifiers (according to which logical quantifiers are defined by enumeration) with the generalized approach (according to which quantifiers are defined systematically), the chapter begins with a brief history of standard quantifier theory and identifies some of its logical, linguistic, and philosophical strengths and weaknesses. It then proceeds to a brief history of generalized quantifier theory and explains how it overcomes the weaknesses of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Necessarily Maybe. Quantifiers, Modality and Vagueness.Alessandro Torza - 2015 - In Quantifiers, Quantifiers, and Quantifiers. Themes in Logic, Metaphysics, and Language. (Synthese Library vol. 373). Springer. pp. 367-387.
    Languages involving modalities and languages involving vagueness have each been thoroughly studied. On the other hand, virtually nothing has been said about the interaction of modality and vagueness. This paper aims to start filling that gap. Section 1 is a discussion of various possible sources of vague modality. Section 2 puts forward a model theory for a quantified language with operators for modality and vagueness. The model theory is followed by a discussion of the resulting logic. In Section 3, the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Bounds of Logic: A Generalized Viewpoint.Gila Sher - 1991 - MIT Press.
    The Bounds of Logic presents a new philosophical theory of the scope and nature of logic based on critical analysis of the principles underlying modern Tarskian logic and inspired by mathematical and linguistic development. Extracting central philosophical ideas from Tarski’s early work in semantics, Sher questions whether these are fully realized by the standard first-order system. The answer lays the foundation for a new, broader conception of logic. By generally characterizing logical terms, Sher establishes a fundamental result in semantics. Her (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Logical Constants, or How to use Invariance in Order to Complete the Explication of Logical Consequence.Denis Bonnay - 2014 - Philosophy Compass 9 (1):54-65.
    The problem of logical constants consists in finding a principled way to draw the line between those expressions of a language that are logical and those that are not. The criterion of invariance under permutation, attributed to Tarski, is probably the most common answer to this problem, at least within the semantic tradition. However, as the received view on the matter, it has recently come under heavy attack. Does this mean that the criterion should be amended, or maybe even that (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Logical Indefinites.Jack Woods - 2014 - Logique Et Analyse -- Special Issue Edited by Julien Murzi and Massimiliano Carrara 227: 277-307.
    I argue that we can and should extend Tarski's model-theoretic criterion of logicality to cover indefinite expressions like Hilbert's ɛ operator, Russell's indefinite description operator η, and abstraction operators like 'the number of'. I draw on this extension to discuss the logical status of both abstraction operators and abstraction principles.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The foundational problem of logic.Gila Sher - 2013 - Bulletin of Symbolic Logic 19 (2):145-198.
    The construction of a systematic philosophical foundation for logic is a notoriously difficult problem. In Part One I suggest that the problem is in large part methodological, having to do with the common philosophical conception of “providing a foundation”. I offer an alternative to the common methodology which combines a strong foundational requirement with the use of non-traditional, holistic tools to achieve this result. In Part Two I delineate an outline of a foundation for logic, employing the new methodology. The (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Validity as a primitive.J. Ketland - 2012 - Analysis 72 (3):421-430.
    A number of recent works consider treating validity as a primitive notion rather than one defined in some standard manner. There seem to have been three motivations. First, to understand how truth and validity interact in potentially paradoxical settings. Second, to argue that validity is in fact afflicted with paradoxes analogous to the semantic paradoxes. Third, to develop a ‘deflationary’ conception of validity or consequence. This article treats the notion of validity as a primitive notion and shows how to provide (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Notions of Invariance for Abstraction Principles.G. A. Antonelli - 2010 - Philosophia Mathematica 18 (3):276-292.
    The logical status of abstraction principles, and especially Hume’s Principle, has been long debated, but the best currently availeble tool for explicating a notion’s logical character—permutation invariance—has not received a lot of attention in this debate. This paper aims to fill this gap. After characterizing abstraction principles as particular mappings from the subsets of a domain into that domain and exploring some of their properties, the paper introduces several distinct notions of permutation invariance for such principles, assessing the philosophical significance (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Logic for morals, morals from logic.Charlie Kurth - 2011 - Philosophical Studies 155 (2):161-180.
    The need to distinguish between logical and extra-logical varieties of inference, entailment, validity, and consistency has played a prominent role in meta-ethical debates between expressivists and descriptivists. But, to date, the importance that matters of logical form play in these distinctions has been overlooked. That’s a mistake given the foundational place that logical form plays in our understanding of the difference between the logical and the extra-logical. This essay argues that descriptivists are better positioned than their expressivist rivals to provide (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Tarski's thesis.Gila Sher - 2008 - In Douglas Patterson (ed.), New essays on Tarski and philosophy. New York: Oxford University Press. pp. 300--339.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Vague representation.Agustín Rayo - 2008 - Mind 117 (466):329-373.
    The goal of this paper is to develop a theory of content for vague language. My proposal is based on the following three theses: (1) language-mastery is not rulebased— it involves a certain kind of decision-making; (2) a theory of content is to be thought of instrumentally—it is a tool for making sense of our linguistic practice; and (3) linguistic contents are only locally defined—they are only defined relative to suitably constrained sets of possibilities. CiteULike Connotea Del.icio.us What's this?
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Number determiners, numbers, and arithmetic.Thomas Hofweber - 2005 - Philosophical Review 114 (2):179-225.
    In his groundbreaking Grundlagen, Frege (1884) pointed out that number words like ‘four’ occur in ordinary language in two quite different ways and that this gives rise to a philosophical puzzle. On the one hand ‘four’ occurs as an adjective, which is to say that it occurs grammatically in sentences in a position that is commonly occupied by adjectives. Frege’s example was (1) Jupiter has four moons, where the occurrence of ‘four’ seems to be just like that of ‘green’ in (...)
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Plurals.Agustín Rayo - 2007 - Philosophy Compass 2 (3):411–427.
    Forthcoming in Philosophical Compass. I explain why plural quantifiers and predicates have been thought to be philosophically significant.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Frege, Kant, and the logic in logicism.John MacFarlane - 2002 - Philosophical Review 111 (1):25-65.
    Let me start with a well-known story. Kant held that logic and conceptual analysis alone cannot account for our knowledge of arithmetic: “however we might turn and twist our concepts, we could never, by the mere analysis of them, and without the aid of intuition, discover what is the sum [7+5]” (KrV, B16). Frege took himself to have shown that Kant was wrong about this. According to Frege’s logicist thesis, every arithmetical concept can be defined in purely logical terms, and (...)
    Download  
     
    Export citation  
     
    Bookmark   119 citations  
  • The problem of logical constants.Mario Gómez-Torrente - 2002 - Bulletin of Symbolic Logic 8 (1):1-37.
    There have been several different and even opposed conceptions of the problem of logical constants, i.e. of the requirements that a good theory of logical constants ought to satisfy. This paper is in the first place a survey of these conceptions and a critique of the theories they have given rise to. A second aim of the paper is to sketch some ideas about what a good theory would look like. A third aim is to draw from these ideas and (...)
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • A natureza dos sincategoremas segundo Pedro Hispano.Guilherme Wyllie - 2019 - Trans/Form/Ação 42 (SPE):333-352.
    Resumo: Pedro Hispano define os sincategoremas como expressões que revelam de que maneira os sujeitos e os predicados estão de fato relacionados nas proposições, contribuindo assim para o estabelecer o que elas significam e fixar as condições de verdade e as formas lógicas correspondentes. Entre as expressões que ele julga serem sincategoremáticas, ‘não’, ‘e’, ‘ou’, ‘se’, ‘todo’ e ‘necessário’ se destacam atualmente como constantes lógicas. Todavia, opondo-se a grande parte dos lógicos contemporâneos para quem tais expressões possuem um significado fixo (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Structuralist Neologicism†.Francesca Boccuni & Jack Woods - 2020 - Philosophia Mathematica 28 (3):296-316.
    Neofregeanism and structuralism are among the most promising recent approaches to the philosophy of mathematics. Yet both have serious costs. We develop a view, structuralist neologicism, which retains the central advantages of each while avoiding their more serious costs. The key to our approach is using arbitrary reference to explicate how mathematical terms, introduced by abstraction principles, refer. Focusing on numerical terms, this allows us to treat abstraction principles as implicit definitions determining all properties of the numbers, achieving a key (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Mathematical Inference and Logical Inference.Yacin Hamami - 2018 - Review of Symbolic Logic 11 (4):665-704.
    The deviation of mathematical proof—proof in mathematical practice—from the ideal of formal proof—proof in formal logic—has led many philosophers of mathematics to reconsider the commonly accepted view according to which the notion of formal proof provides an accurate descriptive account of mathematical proof. This, in turn, has motivated a search for alternative accounts of mathematical proof purporting to be more faithful to the reality of mathematical practice. Yet, in order to develop and evaluate such alternative accounts, it appears as a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Is reality fundamentally qualitative?Andrew Bacon - 2019 - Philosophical Studies 176 (1):259-295.
    Individuals play a prominent role in many metaphysical theories. According to an individualistic metaphysics, reality is determined by the pattern of properties and relations that hold between individuals. A number of philosophers have recently brought to attention alternative views in which individuals do not play such a prominent role; in this paper I will investigate one of these alternatives.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • There is no Logical Negation: True, False, Both, and Neither.Jc Beall - 2017 - Australasian Journal of Logic 14 (1):Article no. 1.
    In this paper I advance and defend a very simple position according to which logic is subclassical but is weaker than the leading subclassical-logic views have it.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Alfred Tarski: philosophy of language and logic.Douglas Patterson - 2012 - New York: Palgrave-Macmillan.
    This study looks to the work of Tarski's mentors Stanislaw Lesniewski and Tadeusz Kotarbinski, and reconsiders all of the major issues in Tarski scholarship in light of the conception of Intuitionistic Formalism developed: semantics, truth, paradox, logical consequence.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Logicality and Invariance.Denis Bonnay - 2006 - Bulletin of Symbolic Logic 14 (1):29-68.
    What is a logical constant? The question is addressed in the tradition of Tarski's definition of logical operations as operations which are invariant under permutation. The paper introduces a general setting in which invariance criteria for logical operations can be compared and argues for invariance under potential isomorphism as the most natural characterization of logical operations.
    Download  
     
    Export citation  
     
    Bookmark   52 citations