Switch to: References

Add citations

You must login to add citations.
  1. The Arithmetical dictum.Paolo Maffezioli & Riccardo Zanichelli - 2023 - History and Philosophy of Logic 44 (4):373-394.
    Building on previous scholarly work on the mathematical roots of assertoric syllogistic we submit that for Aristotle, the semantic value of the copula in universal affirmative propositions is the relation of divisibility on positive integers. The adequacy of this interpretation, labeled here ‘arithmetical dictum’, is assessed both theoretically and textually with respect to the existing interpretations, especially the so-called ‘mereological dictum’.
    Download  
     
    Export citation  
     
    Bookmark  
  • Everything is conceivable: a note on an unused axiom in Spinoza's Ethics.Justin Vlasits - 2021 - British Journal for the History of Philosophy 30 (3):496-507.
    Spinoza's Ethics self-consciously follows the example of Euclid and other geometers in its use of axioms and definitions as the basis for derivations of hundreds of propositions of philosophical si...
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Can the Pyrrhonian Sceptic Suspend Belief Regarding Scientific Definitions?Benjamin Wilck - 2020 - History of Philosophy & Logical Analysis 23 (1):253-288.
    In this article, I tackle a heretofore unnoticed difficulty with the application of Pyrrhonian scepticism to science. Sceptics can suspend belief regarding a dogmatic proposition only by setting up opposing arguments for and against that proposition. Since Sextus provides arguments exclusively against particular geometrical definitions in Adversus Mathematicos III, commentators have argued that Sextus’ method is not scepticism, but negative dogmatism. However, commentators have overlooked the fact that arguments in favour of particular geometrical definitions were absent in ancient geometry, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Zeno Beach.Jacob Rosen - 2020 - Phronesis 65 (4):467-500.
    On Zeno Beach there are infinitely many grains of sand, each half the size of the last. Supposing Aristotle denied the possibility of Zeno Beach, did he have a good argument for the denial? Three arguments, each of ancient origin, are examined: the beach would be infinitely large; the beach would be impossible to walk across; the beach would contain a part equal to the whole, whereas parts must be lesser. It is attempted to show that none of these arguments (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Role of Geometrical Construction in Theodosius’s Spherics.Ken Saito & Nathan Sidoli - 2009 - Archive for History of Exact Sciences 63 (6):581-609.
    This paper is a contribution to our understanding of the constructive nature of Greek geometry. By studying the role of constructive processes in Theodoius’s Spherics, we uncover a difference in the function of constructions and problems in the deductive framework of Greek mathematics. In particular, we show that geometric problems originated in the practical issues involved in actually making diagrams, whereas constructions are abstractions of these processes that are used to introduce objects not given at the outset, so that their (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Axiomatizing Changing Conceptions of the Geometric Continuum I: Euclid-Hilbert†.John T. Baldwin - 2018 - Philosophia Mathematica 26 (3):346-374.
    We give a general account of the goals of axiomatization, introducing a variant on Detlefsen’s notion of ‘complete descriptive axiomatization’. We describe how distinctions between the Greek and modern view of number, magnitude, and proportion impact the interpretation of Hilbert’s axiomatization of geometry. We argue, as did Hilbert, that Euclid’s propositions concerning polygons, area, and similar triangles are derivable from Hilbert’s first-order axioms. We argue that Hilbert’s axioms including continuity show much more than the geometrical propositions of Euclid’s theorems and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Methodology for Teaching Logic-Based Skills to Mathematics Students.Arnold Cusmariu - 2016 - Symposion: Theoretical and Applied Inquiries in Philosophy and Social Sciences 3 (3):259-292.
    Mathematics textbooks teach logical reasoning by example, a practice started by Euclid; while logic textbooks treat logic as a subject in its own right without practical application to mathematics. Stuck in the middle are students seeking mathematical proficiency and educators seeking to provide it. To assist them, the article explains in practical detail how to teach logic-based skills such as: making mathematical reasoning fully explicit; moving from step to step in a mathematical proof in logically correct ways; and checking to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Interpreting the Infinitesimal Mathematics of Leibniz and Euler.Jacques Bair, Piotr Błaszczyk, Robert Ely, Valérie Henry, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Thomas McGaffey, Patrick Reeder, David M. Schaps, David Sherry & Steven Shnider - 2017 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (2):195-238.
    We apply Benacerraf’s distinction between mathematical ontology and mathematical practice to examine contrasting interpretations of infinitesimal mathematics of the seventeenth and eighteenth century, in the work of Bos, Ferraro, Laugwitz, and others. We detect Weierstrass’s ghost behind some of the received historiography on Euler’s infinitesimal mathematics, as when Ferraro proposes to understand Euler in terms of a Weierstrassian notion of limit and Fraser declares classical analysis to be a “primary point of reference for understanding the eighteenth-century theories.” Meanwhile, scholars like (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Euclid’s Fourth Postulate: Its authenticity and significance for the foundations of Greek mathematics.Vincenzo De Risi - 2022 - Science in Context 35 (1):49-80.
    ArgumentThe Fourth Postulate of Euclid’s Elements states that all right angles are equal. This principle has always been considered problematic in the deductive economy of the treatise, and even the ancient interpreters were confused about its mathematical role and its epistemological status. The present essay reconsiders the ancient testimonies on the Fourth Postulate, showing that there is no certain evidence for its authenticity, nor for its spuriousness. The paper also considers modern mathematical interpretations of this postulate, pointing out various anachronisms. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Diagrams for Method 12 in the Archimedes Palimpsest.Xiaoxiao Chen - 2023 - Ancient Philosophy Today 5 (2):199-213.
    This paper discusses four diagrams in the Archimedes Palimpsest, a manuscript that provides among other texts the only extant witness to Archimedes’ Method. My study of the two diagrams for Method 12 aims to open up discussions about the following two questions. First, I want to question the assumed relationship between diagram and geometric configuration. Rather than a representation-represented relation, I argue that the two diagrams for Method 12 have a stronger independence from the geometric configuration they are related to. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hypothetical Inquiry in Plato's Timaeus.Jonathan Edward Griffiths - 2023 - Ancient Philosophy Today 5 (2):156-177.
    This paper re-constructs Plato's ‘philosophy of geometry’ by arguing that he uses a geometrical method of hypothesis in his account of the cosmos’ generation in the Timaeus. Commentators on Plato's philosophy of mathematics often start from Aristotle's report in the Metaphysics that Plato admitted the existence of mathematical objects in-between ( metaxu) Forms and sensible particulars ( Meta. 1.6, 987b14–18). I argue, however, that Plato's interest in mathematics was centred on its methodological usefulness for philosophical inquiry, rather than on questions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ancient Philosophy of Mathematics and Its Tradition.Gonzalo Gamarra Jordán & Chiara Martini - 2023 - Ancient Philosophy Today 5 (2):93-97.
    Download  
     
    Export citation  
     
    Bookmark  
  • Grothendieck’s theory of schemes and the algebra–geometry duality.Gabriel Catren & Fernando Cukierman - 2022 - Synthese 200 (3):1-41.
    We shall address from a conceptual perspective the duality between algebra and geometry in the framework of the refoundation of algebraic geometry associated to Grothendieck’s theory of schemes. To do so, we shall revisit scheme theory from the standpoint provided by the problem of recovering a mathematical structure A from its representations \ into other similar structures B. This vantage point will allow us to analyze the relationship between the algebra-geometry duality and the structure-semiotics duality. Whereas in classical algebraic geometry (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the relationship between geometric objects and figures in Euclidean geometry.Mario Bacelar Valente - 2021 - In Diagrammatic Representation and Inference. 12th International Conference, Diagrams 2021. pp. 71-78.
    In this paper, we will make explicit the relationship that exists between geometric objects and geometric figures in planar Euclidean geometry. That will enable us to determine basic features regarding the role of geometric figures and diagrams when used in the context of pure and applied planar Euclidean geometry, arising due to this relationship. By taking into account pure geometry, as developed in Euclid’s Elements, and practical geometry, we will establish a relation between geometric objects and figures. Geometric objects are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • David Hilbert and the foundations of the theory of plane area.Eduardo N. Giovannini - 2021 - Archive for History of Exact Sciences 75 (6):649-698.
    This paper provides a detailed study of David Hilbert’s axiomatization of the theory of plane area, in the classical monograph Foundation of Geometry. On the one hand, we offer a precise contextualization of this theory by considering it against its nineteenth-century geometrical background. Specifically, we examine some crucial steps in the emergence of the modern theory of geometrical equivalence. On the other hand, we analyze from a more conceptual perspective the significance of Hilbert’s theory of area for the foundational program (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Euclid’s Kinds and (Their) Attributes.Benjamin Wilck - 2020 - History of Philosophy & Logical Analysis 23 (2):362-397.
    Relying upon a very close reading of all of the definitions given in Euclid’s Elements, I argue that this mathematical treatise contains a philosophical treatment of mathematical objects. Specifically, I show that Euclid draws elaborate metaphysical distinctions between substances and non-substantial attributes of substances, different kinds of substance, and different kinds of non-substance. While the general metaphysical theory adopted in the Elements resembles that of Aristotle in many respects, Euclid does not employ Aristotle’s terminology, or indeed, any philosophical terminology at (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cognitive processing of spatial relations in Euclidean diagrams.Yacin Hamami, Milan N. A. van der Kuil, Ineke J. M. van der Ham & John Mumma - 2020 - Acta Psychologica 205:1--10.
    The cognitive processing of spatial relations in Euclidean diagrams is central to the diagram-based geometric practice of Euclid's Elements. In this study, we investigate this processing through two dichotomies among spatial relations—metric vs topological and exact vs co-exact—introduced by Manders in his seminal epistemological analysis of Euclid's geometric practice. To this end, we carried out a two-part experiment where participants were asked to judge spatial relations in Euclidean diagrams in a visual half field task design. In the first part, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Observation about Truth.David Kashtan - 2017 - Dissertation, University of Jerusalem
    Tarski's analysis of the concept of truth gives rise to a hierarchy of languages. Does this fragment the concept all the way to philosophical unacceptability? I argue it doesn't, drawing on a modification of Kaplan's theory of indexicals.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical Generality, Letter-Labels, and All That.F. Acerbi - 2020 - Phronesis 65 (1):27-75.
    This article focusses on the generality of the entities involved in a geometric proof of the kind found in ancient Greek treatises: it shows that the standard modern translation of Greek mathematical propositions falsifies crucial syntactical elements, and employs an incorrect conception of the denotative letters in a Greek geometric proof; epigraphic evidence is adduced to show that these denotative letters are ‘letter-labels’. On this basis, the article explores the consequences of seeing that a Greek mathematical proposition is fully general, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On Euclidean diagrams and geometrical knowledge.Tamires Dal Magro & Manuel J. García-Pérez - 2019 - Theoria. An International Journal for Theory, History and Foundations of Science 34 (2):255.
    We argue against the claim that the employment of diagrams in Euclidean geometry gives rise to gaps in the proofs. First, we argue that it is a mistake to evaluate its merits through the lenses of Hilbert’s formal reconstruction. Second, we elucidate the abilities employed in diagram-based inferences in the Elements and show that diagrams are mathematically reputable tools. Finally, we complement our analysis with a review of recent experimental results purporting to show that, not only is the Euclidean diagram-based (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • From practical to pure geometry and back.Mario Bacelar Valente - 2020 - Revista Brasileira de História da Matemática 20 (39):13-33.
    The purpose of this work is to address the relation existing between ancient Greek practical geometry and ancient Greek pure geometry. In the first part of the work, we will consider practical and pure geometry and how pure geometry can be seen, in some respects, as arising from an idealization of practical geometry. From an analysis of relevant extant texts, we will make explicit the idealizations at play in pure geometry in relation to practical geometry, some of which are basically (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • In defence of geometrical algebra.Viktor Blåsjö - 2016 - Archive for History of Exact Sciences 70 (3):325-359.
    The geometrical algebra hypothesis was once the received interpretation of Greek mathematics. In recent decades, however, it has become anathema to many. I give a critical review of all arguments against it and offer a consistent rebuttal case against the modern consensus. Consequently, I find that the geometrical algebra interpretation should be reinstated as a viable historical hypothesis.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • La Définition V. 8 desElémentsd'Euclide.B. Vitrac - 1996 - Centaurus 38 (2-3):97-121.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Beginnings of Formal Logic: Deduction in Aristotle’s Topics vs. Prior Analytics.Marko Malink - 2015 - Phronesis 60 (3):267-309.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Arithmetizing the geometry from inside: David Hilbert's segment calculus.Eduardo Nicolás Giovannini - 2015 - Scientiae Studia 13 (1):11-48.
    Sobre la base que aportan las notas manuscritas de David Hilbert para cursos sobre geometría, el artículo procura contextualizar y analizar una de las contribuciones más importantes y novedosas de su célebre monografía Fundamentos de la geometría, a saber: el cálculo de segmentos lineales. Se argumenta que, además de ser un resultado matemático importante, Hilbert depositó en su aritmética de segmentos un destacado significado epistemológico y metodológico. En particular, se afirma que para Hilbert este resultado representaba un claro ejemplo de (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Inconsistency in mathematics and the mathematics of inconsistency.Jean Paul van Bendegem - 2014 - Synthese 191 (13):3063-3078.
    No one will dispute, looking at the history of mathematics, that there are plenty of moments where mathematics is “in trouble”, when paradoxes and inconsistencies crop up and anomalies multiply. This need not lead, however, to the view that mathematics is intrinsically inconsistent, as it is compatible with the view that these are just transient moments. Once the problems are resolved, consistency (in some sense or other) is restored. Even when one accepts this view, what remains is the question what (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On some academic theories of mathematical objects.Ian Mueller - 1986 - Journal of Hellenic Studies 106:111-120.
    In his critical study of Speusippus Leonardo Tarán (T.) expounds an interpretation of a considerable part of the controversial books M and N of Aristotle's Metaphysics. In this essay I want to consider three aspects of the interpretation, the account of Plato's ‘ideal numbers’ (section I), the account of Speusippus’ mathematical ontology (section II), and the account of the principles of that ontology (section III). T. builds his interpretation squarely on the work of Harold Cherniss (C.), to whom I will (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The twofold role of diagrams in Euclid’s plane geometry.Marco Panza - 2012 - Synthese 186 (1):55-102.
    Proposition I.1 is, by far, the most popular example used to justify the thesis that many of Euclid’s geometric arguments are diagram-based. Many scholars have recently articulated this thesis in different ways and argued for it. My purpose is to reformulate it in a quite general way, by describing what I take to be the twofold role that diagrams play in Euclid’s plane geometry (EPG). Euclid’s arguments are object-dependent. They are about geometric objects. Hence, they cannot be diagram-based unless diagrams (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Constructive geometrical reasoning and diagrams.John Mumma - 2012 - Synthese 186 (1):103-119.
    Modern formal accounts of the constructive nature of elementary geometry do not aim to capture the intuitive or concrete character of geometrical construction. In line with the general abstract approach of modern axiomatics, nothing is presumed of the objects that a geometric construction produces. This study explores the possibility of a formal account of geometric construction where the basic geometric objects are understood from the outset to possess certain spatial properties. The discussion is centered around Eu , a recently developed (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Relationship between Hypotheses and Images in the Mathematical Subsection of the Divided Line of Plato's Republic.Moon-Heum Yang - 2005 - Dialogue 44 (2):285-312.
    RésuméEn expliquant la relation entre hypothèses et images dans l'analogie de la ligne du livre Vl de laRépubliquede Platon, je m'attarde d'abordsur l'élucidation platonicienne de la nature des mathématiques telle que la conçoit le mathématicien lui-même. Je poursuis avec une critique des interprétations traditionnelles de cette relation, qui partent de l'assomption douteuse que les mathématiques s'occupent des Formes platoniciennes. Pour formuler mon point de vue sur cette relation, j'exploite la notion de «structure». Je montre comment les «hypothèses» comme principes de (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Kant’s Philosophy of Mathematics and the Greek Mathematical Tradition.Daniel Sutherland - 2004 - Philosophical Review 113 (2):157-201.
    The aggregate EIRP of an N-element antenna array is proportional to N 2. This observation illustrates an effective approach for providing deep space networks with very powerful uplinks. The increased aggregate EIRP can be employed in a number of ways, including improved emergency communications, reaching farther into deep space, increased uplink data rates, and the flexibility of simultaneously providing more than one uplink beam with the array. Furthermore, potential for cost savings also exists since the array can be formed using (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Operationalism: An Interpretation of the Philosophy of Ancient Greek Geometry.Viktor Blåsjö - 2022 - Foundations of Science 27 (2):587-708.
    I present a systematic interpretation of the foundational purpose of constructions in ancient Greek geometry. I argue that Greek geometers were committed to an operationalist foundational program, according to which all of mathematics—including its entire ontology and epistemology—is based entirely on concrete physical constructions. On this reading, key foundational aspects of Greek geometry are analogous to core tenets of 20th-century operationalist/positivist/constructivist/intuitionist philosophy of science and mathematics. Operationalism provides coherent answers to a range of traditional philosophical problems regarding classical mathematics, such (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Geometry and arithmetic in the medieval traditions of Euclid’s Elements: a view from Book II.Leo Corry - 2013 - Archive for History of Exact Sciences 67 (6):637-705.
    This article explores the changing relationships between geometric and arithmetic ideas in medieval Europe mathematics, as reflected via the propositions of Book II of Euclid’s Elements. Of particular interest is the way in which some medieval treatises organically incorporated into the body of arithmetic results that were formulated in Book II and originally conceived in a purely geometric context. Eventually, in the Campanus version of the Elements these results were reincorporated into the arithmetic books of the Euclidean treatise. Thus, while (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Definition in mathematics.Carlo Cellucci - 2018 - European Journal for Philosophy of Science 8 (3):605-629.
    In the past century the received view of definition in mathematics has been the stipulative conception, according to which a definition merely stipulates the meaning of a term in other terms which are supposed to be already well known. The stipulative conception has been so absolutely dominant and accepted as unproblematic that the nature of definition has not been much discussed, yet it is inadequate. This paper examines its shortcomings and proposes an alternative, the heuristic conception.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Uses of Argument in Mathematics.Andrew Aberdein - 2005 - Argumentation 19 (3):287-301.
    Stephen Toulmin once observed that ”it has never been customary for philosophers to pay much attention to the rhetoric of mathematical debate’ [Toulmin et al., 1979, An Introduction to Reasoning, Macmillan, London, p. 89]. Might the application of Toulmin’s layout of arguments to mathematics remedy this oversight? Toulmin’s critics fault the layout as requiring so much abstraction as to permit incompatible reconstructions. Mathematical proofs may indeed be represented by fundamentally distinct layouts. However, cases of genuine conflict characteristically reflect an underlying (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Completion, reduction and analysis: three proof-theoretic processes in aristotle’s prior analytics.George Boger - 1998 - History and Philosophy of Logic 19 (4):187-226.
    Three distinctly different interpretations of Aristotle’s notion of a sullogismos in Prior Analytics can be traced: (1) a valid or invalid premise-conclusion argument (2) a single, logically true conditional proposition and (3) a cogent argumentation or deduction. Remarkably the three interpretations hold similar notions about the logical relationships among the sullogismoi. This is most apparent in their conflating three processes that Aristotle especially distinguishes: completion (A4-6)reduction(A7) and analysis (A45). Interpretive problems result from not sufficiently recognizing Aristotle’s remarkable degree of metalogical (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Mathematical skepticism: the debate between Hobbes and Wallis.Luciano Floridi - 2004 - In Maia Neto, José Raimundo & Richard H. Popkin (eds.), Skepticism in Renaissance and post-Renaissance thought: new interpretations. Amherst, N.Y.: Humanity Books.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Eudoxos and dedekind: On the ancient greek theory of ratios and its relation to modern mathematics.Howard Stein - 1990 - Synthese 84 (2):163 - 211.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Counterexample Search in Diagram‐Based Geometric Reasoning.Yacin Hamami, John Mumma & Marie Amalric - 2021 - Cognitive Science 45 (4):e12959.
    Topological relations such as inside, outside, or intersection are ubiquitous to our spatial thinking. Here, we examined how people reason deductively with topological relations between points, lines, and circles in geometric diagrams. We hypothesized in particular that a counterexample search generally underlies this type of reasoning. We first verified that educated adults without specific math training were able to produce correct diagrammatic representations contained in the premisses of an inference. Our first experiment then revealed that subjects who correctly judged an (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Axiomatizing Changing Conceptions of the Geometric Continuum II: Archimedes-Descartes-Hilbert-Tarski†.John T. Baldwin - 2019 - Philosophia Mathematica 27 (1):33-60.
    In Part I of this paper we argued that the first-order systems HP5 and EG are modest complete descriptive axiomatization of most of Euclidean geometry. In this paper we discuss two further modest complete descriptive axiomatizations: Tarksi’s for Cartesian geometry and new systems for adding $$\pi$$. In contrast we find Hilbert’s full second-order system immodest for geometrical purposes but appropriate as a foundation for mathematical analysis.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Kant's Conception of Number.Daniel Sutherland - 2017 - Philosophical Review Current Issue 126 (2):147-190.
    Despite the importance of Kant's claims about mathematical cognition for his philosophy as a whole and for subsequent philosophy of mathematics, there is still no consensus on his philosophy of arithmetic, and in particular the role he assigns intuition in it. This inquiry sets aside the role of intuition for the nonce to investigate Kant's conception of natural number. Although Kant himself doesn't distinguish between a cardinal and an ordinal conception of number, some of the properties Kant attributes to number (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Strategies for conceptual change: Ratio and proportion in classical Greek mathematics.Paul Rusnock & Paul Thagard - 1995 - Studies in History and Philosophy of Science Part A 26 (1):107-131.
    …all men begin… by wondering that things are as they are…as they do about…the incommensurability of the diagonal of the square with the side; for it seems wonderful to all who have not yet seen the reason, that there is a thing which cannot be measured even by the smallest unit. But we must end in the contrary and, according to the proverb, the better state, as is the case in these instances too when men learn the cause; for there (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Euclid’s Common Notions and the Theory of Equivalence.Vincenzo De Risi - 2020 - Foundations of Science 26 (2):301-324.
    The “common notions” prefacing the Elements of Euclid are a very peculiar set of axioms, and their authenticity, as well as their actual role in the demonstrations, have been object of debate. In the first part of this essay, I offer a survey of the evidence for the authenticity of the common notions, and conclude that only three of them are likely to have been in place at the times of Euclid, whereas others were added in Late Antiquity. In the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Superposition: on Cavalieri’s practice of mathematics.Paolo Palmieri - 2009 - Archive for History of Exact Sciences 63 (5):471-495.
    Bonaventura Cavalieri has been the subject of numerous scholarly publications. Recent students of Cavalieri have placed his geometry of indivisibles in the context of early modern mathematics, emphasizing the role of new geometrical objects, such as, for example, linear and plane indivisibles. In this paper, I will complement this recent trend by focusing on how Cavalieri manipulates geometrical objects. In particular, I will investigate one fundamental activity, namely, superposition of geometrical objects. In Cavalieri’s practice, superposition is a means of both (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Tale of Half Sums and Differences Ancient Tricks with Numbers.Christian Marinus Taisbak - 1993 - Centaurus 36 (1):22-32.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Aristotelian explanations.Ilpo Halonen & Jaakko Hintikka - 2000 - Studies in History and Philosophy of Science Part A 31 (4):125-136.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the Origin of Symbolic Mathematics and Its Significance for Wittgenstein’s Thought.Sören Stenlund - 2015 - Nordic Wittgenstein Review 4 (1):7-92.
    The main topic of this essay is symbolic mathematics or the method of symbolic construction, which I trace to the end of the sixteenth century when Franciscus Vieta invented the algebraic symbolism and started to use the word ‘symbolic’ in the relevant, non-ontological sense. This approach has played an important role for many of the great inventions in modern mathematics such as the introduction of the decimal place-value system of numeration, Descartes’ analytic geometry, and Leibniz’s infinitesimal calculus. It was also (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Proofs, pictures, and Euclid.John Mumma - 2010 - Synthese 175 (2):255 - 287.
    Though pictures are often used to present mathematical arguments, they are not typically thought to be an acceptable means for presenting mathematical arguments rigorously. With respect to the proofs in the Elements in particular, the received view is that Euclid's reliance on geometric diagrams undermines his efforts to develop a gap-free deductive theory. The central difficulty concerns the generality of the theory. How can inferences made from a particular diagrams license general mathematical results? After surveying the history behind the received (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Arguing on the Toulmin Model: New Essays in Argument Analysis and Evaluation.David Hitchcock & Bart Verheij (eds.) - 2006 - Dordrecht, Netherland: Springer.
    In The Uses of Argument, Stephen Toulmin proposed a model for the layout of arguments: claim, data, warrant, qualifier, rebuttal, backing. Since then, Toulmin’s model has been appropriated, adapted and extended by researchers in speech communications, philosophy and artificial intelligence. This book assembles the best contemporary reflection in these fields, extending or challenging Toulmin’s ideas in ways that make fresh contributions to the theory of analysing and evaluating arguments.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On the Foundations of Greek Arithmetic.Holger A. Leuz - 2009 - History of Philosophy & Logical Analysis 12 (1):13-47.
    The aim of this essay is to develop a formal reconstruction of Greek arithmetic. The reconstruction is based on textual evidence which comes mainly from Euclid, but also from passages in the texts of Plato and Aristotle. Following Paul Pritchard’s investigation into the meaning of the Greek term arithmos, the reconstruction will be mereological rather than set-theoretical. It is shown that the reconstructed system gives rise to an arithmetic comparable in logical strength to Robinson arithmetic. Our reconstructed Greek arithmetic is (...)
    Download  
     
    Export citation  
     
    Bookmark