Switch to: References

Add citations

You must login to add citations.
  1. L.E.J. Brouwer's ‘Unreliability of the Logical Principles’: A New Translation, with an Introduction.Mark Van Atten & Göran Sundholm - 2017 - History and Philosophy of Logic 38 (1):24-47.
    We present a new English translation of L.E.J. Brouwer's paper ‘De onbetrouwbaarheid der logische principes’ of 1908, together with a philosophical and historical introduction. In this paper Brouwer for the first time objected to the idea that the Principle of the Excluded Middle is valid. We discuss the circumstances under which the manuscript was submitted and accepted, Brouwer's ideas on the principle of the excluded middle, its consistency and partial validity, and his argument against the possibility of absolutely undecidable propositions. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Oxford Handbook of Philosophical Methodology.Herman Cappelen, Tamar Gendler & John Hawthorne (eds.) - 2016 - Oxford, United Kingdom: Oxford University Press.
    This is the most comprehensive book ever published on philosophical methodology. A team of thirty-eight of the world's leading philosophers present original essays on various aspects of how philosophy should be and is done. The first part is devoted to broad traditions and approaches to philosophical methodology. The entries in the second part address topics in philosophical methodology, such as intuitions, conceptual analysis, and transcendental arguments. The third part of the book is devoted to essays about the interconnections between philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Brouwer versus Hilbert: 1907–1928.J. Posy Carl - 1998 - Science in Context 11 (2):291-325.
    The ArgumentL. E. J. Brouwer and David Hubert, two titans of twentieth-century mathematics, clashed dramatically in the 1920s. Though they were both Kantian constructivists, their notoriousGrundlagenstreitcentered on sharp differences about the foundations of mathematics: Brouwer was prepared to revise the content and methods of mathematics (his “Intuitionism” did just that radically), while Hilbert's Program was designed to preserve and constructively secure all of classical mathematics.Hilbert's interests and polemics at the time led to at least three misconstruals of intuitionism, misconstruals which (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Complexity, Hypersets, and the Ecological Perspective on Perception-Action.Anthony Chemero & M. T. Turvey - 2007 - Biological Theory 2 (1):23-36.
    The ecological approach to perception-action is unlike the standard approach in several respects. It takes the animal-in-its-environment as the proper scale for the theory and analysis of perception-action, it eschews symbol based accounts of perception-action, it promotes self-organization as the theory-constitutive metaphor for perception-action, and it employs self-referring, non-predicative definitions in explaining perception-action. The present article details the complexity issues confronted by the ecological approach in terms suggested by Rosen and introduces non-well-founded set theory as a potentially useful tool for (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Conceptual realism versus Quine on classes and higher-order logic.Nino B. Cocchiarella - 1992 - Synthese 90 (3):379 - 436.
    The problematic features of Quine's set theories NF and ML are a result of his replacing the higher-order predicate logic of type theory by a first-order logic of membership, and can be resolved by returning to a second-order logic of predication with nominalized predicates as abstract singular terms. We adopt a modified Fregean position called conceptual realism in which the concepts (unsaturated cognitive structures) that predicates stand for are distinguished from the extensions (or intensions) that their nominalizations denote as singular (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The mathematical import of zermelo's well-ordering theorem.Akihiro Kanamori - 1997 - Bulletin of Symbolic Logic 3 (3):281-311.
    Set theory, it has been contended, developed from its beginnings through a progression ofmathematicalmoves, despite being intertwined with pronounced metaphysical attitudes and exaggerated foundational claims that have been held on its behalf. In this paper, the seminal results of set theory are woven together in terms of a unifying mathematical motif, one whose transmutations serve to illuminate the historical development of the subject. The motif is foreshadowed in Cantor's diagonal proof, and emerges in the interstices of the inclusion vs. membership (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Observation and Intuition.Justin Clarke-Doane & Avner Ash - 2023 - In Carolin Antos, Neil Barton & Giorgio Venturi (eds.), The Palgrave Companion to the Philosophy of Set Theory. Palgrave.
    The motivating question of this paper is: ‘How are our beliefs in the theorems of mathematics justified?’ This is distinguished from the question ‘How are our mathematical beliefs reliably true?’ We examine an influential answer, outlined by Russell, championed by Gödel, and developed by those searching for new axioms to settle undecidables, that our mathematical beliefs are justified by ‘intuitions’, as our scientific beliefs are justified by observations. On this view, axioms are analogous to laws of nature. They are postulated (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hume’s Principle, Bad Company, and the Axiom of Choice.Sam Roberts & Stewart Shapiro - 2023 - Review of Symbolic Logic 16 (4):1158-1176.
    One prominent criticism of the abstractionist program is the so-called Bad Company objection. The complaint is that abstraction principles cannot in general be a legitimate way to introduce mathematical theories, since some of them are inconsistent. The most notorious example, of course, is Frege’s Basic Law V. A common response to the objection suggests that an abstraction principle can be used to legitimately introduce a mathematical theory precisely when it is stable: when it can be made true on all sufficiently (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • In defense of Countabilism.David Builes & Jessica M. Wilson - 2022 - Philosophical Studies 179 (7):2199-2236.
    Inspired by Cantor's Theorem (CT), orthodoxy takes infinities to come in different sizes. The orthodox view has had enormous influence in mathematics, philosophy, and science. We will defend the contrary view---Countablism---according to which, necessarily, every infinite collection (set or plurality) is countable. We first argue that the potentialist or modal strategy for treating Russell's Paradox, first proposed by Parsons (2000) and developed by Linnebo (2010, 2013) and Linnebo and Shapiro (2019), should also be applied to CT, in a way that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A Paradox about Sets of Properties.Nathan Salmón - 2021 - Synthese 199 (5-6):12777-12793.
    A paradox about sets of properties is presented. The paradox, which invokes an impredicatively defined property, is formalized in a free third-order logic with lambda-abstraction, through a classically proof-theoretically valid deduction of a contradiction from a single premise to the effect that every property has a unit set. Something like a model is offered to establish that the premise is, although classically inconsistent, nevertheless consistent, so that the paradox discredits the logic employed. A resolution through the ramified theory of types (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Many and the One: A Philosophical Study of Plural Logic.Salvatore Florio & Øystein Linnebo - 2021 - Oxford, England: Oxford University Press.
    Plural expressions found in natural languages allow us to talk about many objects simultaneously. Plural logic — a logical system that takes plurals at face value — has seen a surge of interest in recent years. This book explores its broader significance for philosophy, logic, and linguistics. What can plural logic do for us? Are the bold claims made on its behalf correct? After introducing plural logic and its main applications, the book provides a systematic analysis of the relation between (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Strict Finitism, Feasibility, and the Sorites.Walter Dean - 2018 - Review of Symbolic Logic 11 (2):295-346.
    This article bears on four topics: observational predicates and phenomenal properties, vagueness, strict finitism as a philosophy of mathematics, and the analysis of feasible computability. It is argued that reactions to strict finitism point towards a semantics for vague predicates in the form of nonstandard models of weak arithmetical theories of the sort originally introduced to characterize the notion of feasibility as understood in computational complexity theory. The approach described eschews the use of nonclassical logic and related devices like degrees (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Robert Lorne Victor Hale FRSE May 4, 1945 – December 12, 2017.Roy T. Cook & Stewart Shapiro - 2018 - Philosophia Mathematica 26 (2):266-274.
    Download  
     
    Export citation  
     
    Bookmark  
  • Paradoxical hypodoxes.Alexandre Billon - 2019 - Synthese 196 (12):5205-5229.
    Most paradoxes of self-reference have a dual or ‘hypodox’. The Liar paradox (Lr = ‘Lr is false’) has the Truth-Teller (Tt = ‘Tt is true’). Russell’s paradox, which involves the set of sets that are not self-membered, has a dual involving the set of sets which are self-membered, etc. It is widely believed that these duals are not paradoxical or at least not as paradoxical as the paradoxes of which they are duals. In this paper, I argue that some paradox’s (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Logic is not Logic.Jean-Ives Béziau - 2010 - Abstracta 6 (1):73-102.
    In this paper we discuss the difference between (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Metaontological Minimalism.Øystein Linnebo - 2012 - Philosophy Compass 7 (2):139-151.
    Can there be objects that are ‘thin’ in the sense that very little is required for their existence? A number of philosophers have thought so. For instance, many Fregeans believe it suffices for the existence of directions that there be lines standing in the relation of parallelism; other philosophers believe it suffices for a mathematical theory to have a model that the theory be coherent. This article explains the appeal of thin objects, discusses the three most important strategies for articulating (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Wittgenstein on Circularity in the Frege-Russell Definition of Cardinal Number.Boudewijn de Bruin - 2008 - Philosophia Mathematica 16 (3):354-373.
    Several scholars have argued that Wittgenstein held the view that the notion of number is presupposed by the notion of one-one correlation, and that therefore Hume's principle is not a sound basis for a definition of number. I offer a new interpretation of the relevant fragments on philosophy of mathematics from Wittgenstein's Nachlass, showing that if different uses of ‘presupposition’ are understood in terms of de re and de dicto knowledge, Wittgenstein's argument against the Frege-Russell definition of number turns out (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Towards a re-evaluation of Julius könig's contribution to logic.Miriam Franchella - 2000 - Bulletin of Symbolic Logic 6 (1):45-66.
    Julius König is famous for his mistaken attempt to demonstrate that the continuum hypothesis was false. It is also known that the only positive result that could have survived from his proof is the paradox which bears his name. Less famous is his 1914 book Neue Grundlagen der Logik, Arithmetik und Mengenlehre. Still, it contains original contributions to logic, like the concept of metatheory and the solution of paradoxes based on the refusal of the law of bivalence. We are going (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Some Highs and Lows of Hylomorphism: On a Paradox about Property Abstraction.Teresa Robertson Ishii & Nathan Salmón - 2020 - Philosophical Studies 177 (6):1549-1563.
    We defend hylomorphism against Maegan Fairchild’s purported proof of its inconsistency. We provide a deduction of a contradiction from SH+, which is the combination of “simple hylomorphism” and an innocuous premise. We show that the deduction, reminiscent of Russell’s Paradox, is proof-theoretically valid in classical higher-order logic and invokes an impredicatively defined property. We provide a proof that SH+ is nevertheless consistent in a free higher-order logic. It is shown that the unrestricted comprehension principle of property abstraction on which the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Esistenza e Persistenza.Damiano Costa - 2018 - Milan, IT: Mimesis.
    Nel nostro universo, qualunque cosa, dalla più piccola particella alla più smisurata galassia, esiste in un qualche tempo e in un qualche luogo. Ma cosa significa esistere in un qualche tempo? Il fenomeno dell’esistenza temporale gioca un ruolo fondamentale nella comprensione dell’universo e di noi stessi quali creature temporali. Eppure è un fenomeno profondamente misterioso. L’esistenza temporale è da intendersi come una relazione? Che legami ha con l’esistenza dell’ontologia? L’esistenza temporale e la localizzazione spaziale sono due fenomeni essenzialmente differenti o (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The prehistory of the subsystems of second-order arithmetic.Walter Dean & Sean Walsh - 2017 - Review of Symbolic Logic 10 (2):357-396.
    This paper presents a systematic study of the prehistory of the traditional subsystems of second-order arithmetic that feature prominently in the reverse mathematics program of Friedman and Simpson. We look in particular at: (i) the long arc from Poincar\'e to Feferman as concerns arithmetic definability and provability, (ii) the interplay between finitism and the formalization of analysis in the lecture notes and publications of Hilbert and Bernays, (iii) the uncertainty as to the constructive status of principles equivalent to Weak K\"onig's (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic.Corey Edward Mulvihill - 2015 - Dissertation, University of Waterloo
    Hilbert’s choice operators τ and ε, when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving program in the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • “The soul of the fact”—Poincaréand proof.Jeremy Gray - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 47 (C):142-150.
    Download  
     
    Export citation  
     
    Bookmark  
  • Intuitionism and Logical Tolerance.B. G. Sundholm - unknown
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Zermelo and set theory.Akihiro Kanamori - 2004 - Bulletin of Symbolic Logic 10 (4):487-553.
    Ernst Friedrich Ferdinand Zermelo transformed the set theory of Cantor and Dedekind in the first decade of the 20th century by incorporating the Axiom of Choice and providing a simple and workable axiomatization setting out generative set-existence principles. Zermelo thereby tempered the ontological thrust of early set theory, initiated the delineation of what is to be regarded as set-theoretic, drawing out the combinatorial aspects from the logical, and established the basic conceptual framework for the development of modern set theory. Two (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • La constitución del programa de Hilbert.Max Fernández de Castro & Yolanda Torres Falcón - 2020 - Metatheoria – Revista de Filosofía E Historia de la Ciencia 10 (2):31--50.
    In the pages that follow, it is our intention to present a panoramic and schematic view of the evolution of the formalist program, which derives from recent studies of lecture notes that were unknown until very recently. Firstly, we analyze certain elements of the program. Secondly, we observe how, once the program was established in 1920, in the period up to 1931, different types of finitism with a common basis were tried out by Hilbert and Bernays, in an effort to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The entanglement of logic and set theory, constructively.Laura Crosilla - 2022 - Inquiry: An Interdisciplinary Journal of Philosophy 65 (6).
    ABSTRACT Theories of sets such as Zermelo Fraenkel set theory are usually presented as the combination of two distinct kinds of principles: logical and set-theoretic principles. The set-theoretic principles are imposed ‘on top’ of first-order logic. This is in agreement with a traditional view of logic as universally applicable and topic neutral. Such a view of logic has been rejected by the intuitionists, on the ground that quantification over infinite domains requires the use of intuitionistic rather than classical logic. In (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the mathematical nature of logic, featuring P. Bernays and K. Gödel.Oran Magal - unknown
    The paper examines the interrelationship between mathematics and logic, arguing that a central characteristic of each has an essential role within the other. The first part is a reconstruction of and elaboration on Paul Bernays’ argument, that mathematics and logic are based on different directions of abstraction from content, and that mathematics, at its core it is a study of formal structures. The notion of a study of structure is clarified by the examples of Hilbert’s work on the axiomatization of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Logic, Mathematics, Philosophy, Vintage Enthusiasms: Essays in Honour of John L. Bell.David DeVidi, Michael Hallett & Peter Clark (eds.) - 2011 - Dordrecht, Netherland: Springer.
    The volume includes twenty-five research papers presented as gifts to John L. Bell to celebrate his 60th birthday by colleagues, former students, friends and admirers. Like Bell’s own work, the contributions cross boundaries into several inter-related fields. The contributions are new work by highly respected figures, several of whom are among the key figures in their fields. Some examples: in foundations of maths and logic ; analytical philosophy, philosophy of science, philosophy of mathematics and decision theory and foundations of economics. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)On Dialogues, Predication and Elementary sentences.Shahid Rahman & Nicolas Clerbout - 2013 - Revista de Humanidades de Valparaíso 2:7-46.
    In its origins Dialogical logic constituted the logical foundations of an overall new movement called the Erlangen School or Erlangen Constructivism that should provide a new start to a general theory of language and of science. In relation to the theory of language, according to the Erlangen-School, language is not just a fact that we discover, but a human cultural accomplishment whose construction reason can and should control. The constructive development of a scientific language was called the Orthosprache-project. Unfortunately, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Substitution’s Unsolved “Insolubilia”.Jolen Galaugher - 2013 - Russell: The Journal of Bertrand Russell Studies 33 (1):5-30.
    Russell’s substitutional theory conferred philosophical advantages over the simple type theory it was to emulate. However, it faced propositional paradoxes, and in a 1906 paper “On ‘Insolubilia’ and Their Solution by Symbolic Logic”, he modified the theory to block these paradoxes while preserving Cantor’s results. My aim is to draw out several quandaries for the interpretation of the role of substitution in Russell’s logic. If he was aware of the substitutional (_p_0_a_0) paradox in 1906, why did he advertise “Insolubilia” as (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An inferential community: Poincaré’s mathematicians.Michel Dufour & John Woods - 2011 - In Frank Zenker (ed.), Proceedings of the 9th International Conference of the Ontario Society for the Study of Argumentation (OSSA), May 18-21, 2011. pp. 156-166.
    Inferential communities are communities using specific substantial argumentative schemes. The religious or scientific communities are examples. I discuss the status of the mathematical community as it appears through the position held by the French mathematician Henri Poincaré during his famous ar-guments with Russell, Hilbert, Peano and Cantor. The paper focuses on the status of complete induction and how logic and psychology shape the community of mathematicians and the teaching of mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Falling in and out of Love with Philosophy.John Forrester - 2012 - In Armen T. Marsoobian, Eric Cavallero & Alexis Papazoglou (eds.), The Pursuit of Philosophy. Malden, MA: Wiley. pp. 111–125.
    This chapter contains sections titled: References.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Falling In and Out of Love with Philosophy.John Forrester - 2012 - Metaphilosophy 43 (1-2):96-111.
    In this article, principally through autobiographical remarks, some observations concerning philosophical temperament are made, the example of Gerd Buchdahl as a textual interpreter of classic philosophical texts is invoked, and the position of philosophy in relation to history of science is explored, in particular in the work of Kuhn and Foucault. The article concludes with a reminder of the overall history of philosophy at Cambridge through a discussion of the history of the moral sciences.
    Download  
     
    Export citation  
     
    Bookmark  
  • Russell, Presupposition, and the Vicious-Circle Principle.Darryl Jung - 1999 - Notre Dame Journal of Formal Logic 40 (1):55-80.
    Prompted by Poincaré, Russell put forward his celebrated vicious-circle principle (vcp) as the solution to the modern paradoxes. Ramsey, Gödel, and Quine, among others, have raised two salient objections against Russell's vcp. First, Gödel has claimed that Russell's various renderings of the vcp really express distinct principles and thus, distinct solutions to the paradoxes, a claim that gainsays one of Russell's positions on the nature of the solution to the paradoxes, namely, that such a solution be uniform. Secondly, Ramsey, Gödel, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Paradoxes and contemporary logic.Andrea Cantini - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Hilbert's Programs: 1917–1922.Wilfried Sieg - 1999 - Bulletin of Symbolic Logic 5 (1):1-44.
    Hilbert's finitist program was not created at the beginning of the twenties solely to counteract Brouwer's intuitionism, but rather emerged out of broad philosophical reflections on the foundations of mathematics and out of detailed logical work; that is evident from notes of lecture courses that were given by Hilbert and prepared in collaboration with Bernays during the period from 1917 to 1922. These notes reveal a dialectic progression from a critical logicism through a radical constructivism toward finitism; the progression has (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Taking Stock: Hale, Heck, and Wright on Neo-Logicism and Higher-Order Logic.Crispin Wright - 2021 - Philosophia Mathematica 29 (3): 392--416.
    ABSTRACT Four philosophical concerns about higher-order logic in general and the specific demands placed on it by the neo-logicist project are distinguished. The paper critically reviews recent responses to these concerns by, respectively, the late Bob Hale, Richard Kimberly Heck, and myself. It is argued that these score some successes. The main aim of the paper, however, is to argue that the most serious objection to the applications of higher-order logic required by the neo-logicist project has not been properly understood. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematics and philosophy of mathematics.Stewart Shapiro - 1994 - Philosophia Mathematica 2 (2):148-160.
    The purpose of this note is to examine the relationship between the practice of mathematics and the philosophy of mathematics, ontology in particular. One conclusion is that the enterprises are (or should be) closely related, with neither one dominating the other. One cannot 'read off' the correct way to do mathematics from the true ontology, for example, nor can one ‘read off’ the true ontology from mathematics as practiced.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • La fundamentación logicista de la matemática.Rudolf Carnap - 2020 - Metatheoria – Revista de Filosofía E Historia de la Ciencia 10 (2):63--72.
    This is the Spanish translation, by Valeria Sol Valiño, of Rudolf Carnap’s classical text “Die logizistische Grundlegung der Mathematik”, which was originally presented at the Königsberg’s Symposium on Philosophy of Mathematics in 1930, and finally published in Erkenntnis in 1931.
    Download  
     
    Export citation  
     
    Bookmark  
  • Black, White and Gray: Quine on Convention.Yemima Ben-Menahem - 2005 - Synthese 146 (3):245-282.
    This paper examines Quine’s web of belief metaphor and its role in his various responses to conventionalism. Distinguishing between two versions of conventionalism, one based on the under-determination of theory, the other associated with a linguistic account of necessary truth, I show how Quine plays the two versions of conventionalism against each other. Some of Quine’s reservations about conventionalism are traced back to his 1934 lectures on Carnap. Although these lectures appear to endorse Carnap’s conventionalism, in exposing Carnap’s failure to (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Beppo Levi’s Analysis of the Paradoxes.Riccardo Bruni - 2013 - Logica Universalis 7 (2):211-231.
    This paper presents and comments the content of a note by Beppo Levi on logical paradoxes. Though the existence of this contribution is known, very little analysis of it is available in the literature. I put the emphasis on Levi’s usage of “elementation procedures” for solving the set-theoretical paradoxes, which is the most original part of Levi’s approach to the topic.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Polymorphism and the obstinate circularity of second order logic: A victims’ tale.Paolo Pistone - 2018 - Bulletin of Symbolic Logic 24 (1):1-52.
    The investigations on higher-order type theories and on the related notion of parametric polymorphism constitute the technical counterpart of the old foundational problem of the circularity of second and higher-order logic. However, the epistemological significance of such investigations has not received much attention in the contemporary foundational debate.We discuss Girard’s normalization proof for second order type theory or System F and compare it with two faulty consistency arguments: the one given by Frege for the logical system of the Grundgesetze and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Interpretability in Robinson's Q.Fernando Ferreira & Gilda Ferreira - 2013 - Bulletin of Symbolic Logic 19 (3):289-317.
    Edward Nelson published in 1986 a book defending an extreme formalist view of mathematics according to which there is animpassable barrierin the totality of exponentiation. On the positive side, Nelson embarks on a program of investigating how much mathematics can be interpreted in Raphael Robinson's theory of arithmetic. In the shadow of this program, some very nice logical investigations and results were produced by a number of people, not only regarding what can be interpreted inbut also what cannot be so (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Mathematical induction in ramified type theory.James R. Royse - 1969 - Mathematical Logic Quarterly 15 (1‐3):7-10.
    Download  
     
    Export citation  
     
    Bookmark  
  • Rescuing Poincaré from Richard’s Paradox.Laureano Luna - 2017 - History and Philosophy of Logic 38 (1):57-71.
    Poincaré in a 1909 lecture in Göttingen proposed a solution to the apparent incompatibility of two results as viewed from a definitionist perspective: on the one hand, Richard’s proof that the definitions of real numbers form a countable set and, on the other, Cantor’s proof that the real numbers make up an uncountable class. Poincaré argues that, Richard’s result notwithstanding, there is no enumeration of all definable real numbers. We apply previous research by Luna and Taylor on Richard’s paradox, indefinite (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation