Switch to: References

Add citations

You must login to add citations.
  1. Superintuitionistic companions of classical modal logics.Frank Wolter - 1997 - Studia Logica 58 (2):229-259.
    This paper investigates partitions of lattices of modal logics based on superintuitionistic logics which are defined by forming, for each superintuitionistic logic L and classical modal logic , the set L[] of L-companions of . Here L[] consists of those modal logics whose non-modal fragments coincide with L and which axiomatize if the law of excluded middle p V p is added. Questions addressed are, for instance, whether there exist logics with the disjunction property in L[], whether L[] contains a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Abstract modal logics.Ramon Jansana - 1995 - Studia Logica 55 (2):273 - 299.
    In this paper we develop a general framework to deal with abstract logics associated with a given modal logic. In particular we study the abstract logics associated with the weak and strong deductive systems of the normal modal logicK and its intuitionistic version. We also study the abstract logics that satisfy the conditionC +(X)=C( in I n X) and find the modal deductive systems whose abstract logics, in addition to being classical or intuitionistic, satisfy that condition. Finally we study the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Truth and Falsehood: An Inquiry Into Generalized Logical Values.Yaroslav Shramko & Heinrich Wansing - 2011 - Dordrecht, Netherland: Springer.
    The book presents a thoroughly elaborated logical theory of generalized truth-values understood as subsets of some established set of truth values. After elucidating the importance of the very notion of a truth value in logic and philosophy, we examine some possible ways of generalizing this notion. The useful four-valued logic of first-degree entailment by Nuel Belnap and the notion of a bilattice constitute the basis for further generalizations. By doing so we elaborate the idea of a multilattice, and most notably, (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Falsification-Aware Semantics and Sequent Calculi for Classical Logic.Norihiro Kamide - 2021 - Journal of Philosophical Logic 51 (1):99-126.
    In this study, falsification-aware semantics and sequent calculi for first-order classical logic are introduced and investigated. These semantics and sequent calculi are constructed based on a falsification-aware setting for first-order Nelson constructive three-valued logic. In fact, these semantics and sequent calculi are regarded as those for a classical variant of N3. The completeness and cut-elimination theorems for the proposed semantics and sequent calculi are proved using Schütte’s method. Similar results for the propositional case are also obtained.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Paraconsistent Double Negations as Classical and Intuitionistic Negations.Norihiro Kamide - 2017 - Studia Logica 105 (6):1167-1191.
    A classical paraconsistent logic, which is regarded as a modified extension of first-degree entailment logic, is introduced as a Gentzen-type sequent calculus. This logic can simulate the classical negation in classical logic by paraconsistent double negation in CP. Theorems for syntactically and semantically embedding CP into a Gentzen-type sequent calculus LK for classical logic and vice versa are proved. The cut-elimination and completeness theorems for CP are also shown using these embedding theorems. Similar results are also obtained for an intuitionistic (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Post Completeness in Congruential Modal Logics.Peter Fritz - 2016 - In Lev Beklemishev, Stéphane Demri & András Máté (eds.), Advances in Modal Logic, Volume 11. CSLI Publications. pp. 288-301.
    Well-known results due to David Makinson show that there are exactly two Post complete normal modal logics, that in both of them, the modal operator is truth-functional, and that every consistent normal modal logic can be extended to at least one of them. Lloyd Humberstone has recently shown that a natural analog of this result in congruential modal logics fails, by showing that not every congruential modal logic can be extended to one in which the modal operator is truth-functional. As (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Sequent calculi for some trilattice logics.Norihiro Kamide & Heinrich Wansing - 2009 - Review of Symbolic Logic 2 (2):374-395.
    The trilattice SIXTEEN3 introduced in Shramko & Wansing (2005) is a natural generalization of the famous bilattice FOUR2. Some Hilbert-style proof systems for trilattice logics related to SIXTEEN3 have recently been studied (Odintsov, 2009; Shramko & Wansing, 2005). In this paper, three sequent calculi GB, FB, and QB are presented for Odintsovs coordinate valuations associated with valuations in SIXTEEN3. The equivalence between GB, FB, and QB, the cut-elimination theorems for these calculi, and the decidability of B are proved. In addition, (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Speaking about transitive frames in propositional languages.Yasuhito Suzuki, Frank Wolter & Michael Zakharyaschev - 1998 - Journal of Logic, Language and Information 7 (3):317-339.
    This paper is a comparative study of the propositional intuitionistic (non-modal) and classical modal languages interpreted in the standard way on transitive frames. It shows that, when talking about these frames rather than conventional quasi-orders, the intuitionistic language displays some unusual features: its expressive power becomes weaker than that of the modal language, the induced consequence relation does not have a deduction theorem and is not protoalgebraic. Nevertheless, the paper develops a manageable model theory for this consequence and its extensions (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Meaning-Preserving Translations of Non-classical Logics into Classical Logic: Between Pluralism and Monism.Gerhard Schurz - 2021 - Journal of Philosophical Logic 51 (1):27-55.
    In order to prove the validity of logical rules, one has to assume these rules in the metalogic. However, rule-circular ‘justifications’ are demonstrably without epistemic value. Is a non-circular justification of a logical system possible? This question attains particular importance in view of lasting controversies about classical versus non-classical logics. In this paper the question is answered positively, based on meaning-preserving translations between logical systems. It is demonstrated that major systems of non-classical logic, including multi-valued, paraconsistent, intuitionistic and quantum logics, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Diamonds are a philosopher's best friends.Heinrich Wansing - 2002 - Journal of Philosophical Logic 31 (6):591-612.
    The knowability paradox is an instance of a remarkable reasoning pattern (actually, a pair of such patterns), in the course of which an occurrence of the possibility operator, the diamond, disappears. In the present paper, it is pointed out how the unwanted disappearance of the diamond may be escaped. The emphasis is not laid on a discussion of the contentious premise of the knowability paradox, namely that all truths are possibly known, but on how from this assumption the conclusion is (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Relevant deduction.Gerhard Schurz - 1991 - Erkenntnis 35 (1):391 - 437.
    This paper presents an outline of a new theory of relevant deduction which arose from the purpose of solving paradoxes in various fields of analytic philosophy. In distinction to relevance logics, this approach does not replace classical logic by a new one, but distinguishes between relevance and validity. It is argued that irrelevant arguments are, although formally valid, nonsensical and even harmful in practical applications. The basic idea is this: a valid deduction is relevant iff no subformula of the conclusion (...)
    Download  
     
    Export citation  
     
    Bookmark   84 citations  
  • Almost structural completeness; an algebraic approach.Wojciech Dzik & Michał M. Stronkowski - 2016 - Annals of Pure and Applied Logic 167 (7):525-556.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Leo Esakia on Duality in Modal and Intuitionistic Logics.Guram Bezhanishvili (ed.) - 2014 - Dordrecht, Netherland: Springer.
    This volume is dedicated to Leo Esakia's contributions to the theory of modal and intuitionistic systems. Consisting of 10 chapters, written by leading experts, this volume discusses Esakia’s original contributions and consequent developments that have helped to shape duality theory for modal and intuitionistic logics and to utilize it to obtain some major results in the area. Beginning with a chapter which explores Esakia duality for S4-algebras, the volume goes on to explore Esakia duality for Heyting algebras and its generalizations (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Kripke Completeness of Bi-intuitionistic Multilattice Logic and its Connexive Variant.Norihiro Kamide, Yaroslav Shramko & Heinrich Wansing - 2017 - Studia Logica 105 (6):1193-1219.
    In this paper, bi-intuitionistic multilattice logic, which is a combination of multilattice logic and the bi-intuitionistic logic also known as Heyting–Brouwer logic, is introduced as a Gentzen-type sequent calculus. A Kripke semantics is developed for this logic, and the completeness theorem with respect to this semantics is proved via theorems for embedding this logic into bi-intuitionistic logic. The logic proposed is an extension of first-degree entailment logic and can be regarded as a bi-intuitionistic variant of the original classical multilattice logic (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • 2-element matrices.Wolfgang Rautenberg - 1981 - Studia Logica 40 (4):315 - 353.
    Sections 1, 2 and 3 contain the main result, the strong finite axiomatizability of all 2-valued matrices. Since non-strongly finitely axiomatizable 3-element matrices are easily constructed the result reveals once again the gap between 2-valued and multiple-valued logic. Sec. 2 deals with the basic cases which include the important F i from Post's classification. The procedure in Sec. 3 reduces the general problem to these cases. Sec. 4 is a study of basic algebraic properties of 2-element algebras. In particular, we (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • A formalization of elenctic argumentation.Sergio Galvan - 1995 - Erkenntnis 43 (1):111 - 126.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On variable separation in modal and superintuitionistic logics.Larisa Maksimova - 1995 - Studia Logica 55 (1):99 - 112.
    In this paper we find an algebraic equivalent of the Hallden property in modal logics, namely, we prove that the Hallden-completeness in any normal modal logic is equivalent to the so-called super-embedding property of a suitable class of modal algebras. The joint embedding property of a class of algebras is equivalent to the Pseudo-Relevance Property. We consider connections of the above-mentioned properties with interpolation and amalgamation. Also an algebraic equivalent of of the principle of variable separation in superintuitionistic logics will (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Frame Based Formulas for Intermediate Logics.Nick Bezhanishvili - 2008 - Studia Logica 90 (2):139-159.
    In this paper we define the notion of frame based formulas. We show that the well-known examples of formulas arising from a finite frame, such as the Jankov-de Jongh formulas, subframe formulas and cofinal subframe formulas, are all particular cases of the frame based formulas. We give a criterion for an intermediate logic to be axiomatizable by frame based formulas and use this criterion to obtain a simple proof that every locally tabular intermediate logic is axiomatizable by Jankov-de Jongh formulas. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • G3-style Sequent Calculi for Gurevich Logic and Its Neighbors.Norihiro Kamide & Sara Negri - forthcoming - Studia Logica:1-29.
    G3-style sequent calculi are introduced for a family of logics with strong negation: Gurevich logic, Nelson logic, intuitionistic propositional logic, Avron logic, De-Omori logic, and classical propositional logic. Structural properties including cut elimination are established for these calculi. In addition, a Glivenko theorem for embedding classical propositional logic into Gurevich logic is shown.
    Download  
     
    Export citation  
     
    Bookmark  
  • Intermediate logics preserving admissible inference rules of heyting calculus.Vladimir V. Rybakov - 1993 - Mathematical Logic Quarterly 39 (1):403-415.
    The aim of this paper is to look from the point of view of admissibility of inference rules at intermediate logics having the finite model property which extend Heyting's intuitionistic propositional logic H. A semantic description for logics with the finite model property preserving all admissible inference rules for H is given. It is shown that there are continuously many logics of this kind. Three special tabular intermediate logics λ, 1 ≥ i ≥ 3, are given which describe all tabular (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Gentzen-Type Sequent Calculi for Extended Belnap–Dunn Logics with Classical Negation: A General Framework.Norihiro Kamide - 2019 - Logica Universalis 13 (1):37-63.
    Gentzen-type sequent calculi GBD+, GBDe, GBD1, and GBD2 are respectively introduced for De and Omori’s axiomatic extensions BD+, BDe, BD1, and BD2 of Belnap–Dunn logic by adding classical negation. These calculi are constructed based on a small modification of the original characteristic axiom scheme for negated implication. Theorems for syntactically and semantically embedding these calculi into a Gentzen-type sequent calculus LK for classical logic are proved. The cut-elimination, decidability, and completeness theorems for these calculi are obtained using these embedding theorems. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Gnosis.Marcus Kracht - 2011 - Journal of Philosophical Logic 40 (3):397 - 420.
    The transition from form to meaning is not neatly layered: there is no point where form ends and content sets in. Rather, there is an almost continuous process that converts form into meaning. That process cannot always take a straight line. Very often we hit barriers in our mind, due to the inability to understand the exact content of the sentence just heard. The standard division between formula and interpretation (or value) should therefore be given up when talking about the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Extended full computation-tree logics for paraconsistent model checking.Norihiro Kamide - 2007 - Logic and Logical Philosophy 15 (3):251-276.
    It is known that the full computation-tree logic CTL * is an important base logic for model checking. The bisimulation theorem for CTL* is known to be useful for abstraction in model checking. In this paper, the bisimulation theorems for two paraconsistent four-valued extensions 4CTL* and 4LCTL* of CTL* are shown, and a translation from 4CTL* into CTL* is presented. By using 4CTL* and 4LCTL*, inconsistency-tolerant and spatiotemporal reasoning can be expressed as a model checking framework.
    Download  
     
    Export citation  
     
    Bookmark  
  • Unification types and union splittings in intermediate logics.Wojciech Dzik, Sławomir Kost & Piotr Wojtylak - 2025 - Annals of Pure and Applied Logic 176 (1):103508.
    Download  
     
    Export citation  
     
    Bookmark  
  • Falsification-Aware Calculi and Semantics for Normal Modal Logics Including S4 and S5.Norihiro Kamide - 2023 - Journal of Logic, Language and Information 32 (3):395-440.
    Falsification-aware (hyper)sequent calculi and Kripke semantics for normal modal logics including S4 and S5 are introduced and investigated in this study. These calculi and semantics are constructed based on the idea of a falsification-aware framework for Nelson’s constructive three-valued logic. The cut-elimination and completeness theorems for the proposed calculi and semantics are proved.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An Extended Paradefinite Logic Combining Conflation, Paraconsistent Negation, Classical Negation, and Classical Implication: How to Construct Nice Gentzen-type Sequent Calculi.Norihiro Kamide - 2022 - Logica Universalis 16 (3):389-417.
    In this study, an extended paradefinite logic with classical negation (EPLC), which has the connectives of conflation, paraconsistent negation, classical negation, and classical implication, is introduced as a Gentzen-type sequent calculus. The logic EPLC is regarded as a modification of Arieli, Avron, and Zamansky’s ideal four-valued paradefinite logic (4CC) and as an extension of De and Omori’s extended Belnap–Dunn logic with classical negation (BD+) and Avron’s self-extensional four-valued paradefinite logic (SE4). The completeness, cut-elimination, and decidability theorems for EPLC are proved (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal Multilattice Logic.Norihiro Kamide & Yaroslav Shramko - 2017 - Logica Universalis 11 (3):317-343.
    A modal extension of multilattice logic, called modal multilattice logic, is introduced as a Gentzen-type sequent calculus \. Theorems for embedding \ into a Gentzen-type sequent calculus S4C and vice versa are proved. The cut-elimination theorem for \ is shown. A Kripke semantics for \ is introduced, and the completeness theorem with respect to this semantics is proved. Moreover, the duality principle is proved as a characteristic property of \.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Even more about the lattice of tense logics.Marcus Kracht - 1992 - Archive for Mathematical Logic 31 (4):243-257.
    The present paper is based on [11], where a number of conjectures are made concerning the structure of the lattice of normal extensions of the tense logicKt. That paper was mainly dealing with splittings of and some sublattices, and this is what I will concentrate on here as well. The main tool in analysing the splittings of will be the splitting theorem of [8]. In [11] it was conjectured that each finite subdirectly irreducible algebra splits the lattice of normal extensions (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A relationship between Rauszer's HB logic and Nelson's logic'.Norihiro Kamide - 2004 - Bulletin of the Section of Logic 33 (4):237-249.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • How far can Hume's is-ought thesis be generalized?Gerhard Schurz - 1991 - Journal of Philosophical Logic 20 (1):37 - 95.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On extensions of intermediate logics by strong negation.Marcus Kracht - 1998 - Journal of Philosophical Logic 27 (1):49-73.
    In this paper we will study the properties of the least extension n(Λ) of a given intermediate logic Λ by a strong negation. It is shown that the mapping from Λ to n(Λ) is a homomorphism of complete lattices, preserving and reflecting finite model property, frame-completeness, interpolation and decidability. A general characterization of those constructive logics is given which are of the form n(Λ). This summarizes results that can be found already in [13, 14] and [4]. Furthermore, we determine the (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Modal and Intuitionistic Variants of Extended Belnap–Dunn Logic with Classical Negation.Norihiro Kamide - 2021 - Journal of Logic, Language and Information 30 (3):491-531.
    In this study, we introduce Gentzen-type sequent calculi BDm and BDi for a modal extension and an intuitionistic modification, respectively, of De and Omori’s extended Belnap–Dunn logic BD+ with classical negation. We prove theorems for syntactically and semantically embedding BDm and BDi into Gentzen-type sequent calculi S4 and LJ for normal modal logic and intuitionistic logic, respectively. The cut-elimination, decidability, and completeness theorems for BDm and BDi are obtained using these embedding theorems. Moreover, we prove the Glivenko theorem for embedding (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Three-element nonfinitely axiomatizable matrices.Katarzyna Pałasińska - 1994 - Studia Logica 53 (3):361 - 372.
    There are exactly two nonfinitely axiomatizable algebraic matrices with one binary connective o such thatx(yz) is a tautology of . This answers a question asked by W. Rautenberg in [2], P. Wojtylak in [8] and W. Dziobiak in [1]. Since every 2-element matrix can be finitely axiomatized ([3]), the matrices presented here are of the smallest possible size and in some sense are the simplest possible.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Intermediate logics with the same disjunctionless fragment as intuitionistic logic.Plerluigi Minari - 1986 - Studia Logica 45 (2):207 - 222.
    Given an intermediate prepositional logic L, denote by L –d its disjuctionless fragment. We introduce an infinite sequence {J n}n1 of propositional formulas, and prove:(1)For any L: L –d =I –d (I=intuitionistic logic) if and only if J n L for every n 1.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Prefinitely axiomatizable modal and intermediate logics.Marcus Kracht - 1993 - Mathematical Logic Quarterly 39 (1):301-322.
    A logic Λ bounds a property P if all proper extensions of Λ have P while Λ itself does not. We construct logics bounding finite axiomatizability and logics bounding finite model property in the lattice of intermediate logics and in the lattice of normal extensions of K4.3. MSC: 03B45, 03B55.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Judgment and consequence relations.Marcus Kracht - 2010 - Journal of Applied Non-Classical Logics 20 (4):423-435.
    In this paper I argue that a variety of consequence relations can be subsumed under a common core. The reduction proceeds by taking the unconditional consequence, or judgment, as basic and deriving the conditional consequence via a uniform abstraction scheme. A specific outcome is that it is better not to base such a scheme on the semantic notion of a matrix and valuation but rather on theories and substitutions. I will also briefly look at consequence relations that are not reducible (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Lattice Logic, Bilattice Logic and Paraconsistent Quantum Logic: a Unified Framework Based on Monosequent Systems.Norihiro Kamide - 2021 - Journal of Philosophical Logic 50 (4):781-811.
    Lattice logic, bilattice logic, and paraconsistent quantum logic are investigated based on monosequent systems. Paraconsistent quantum logic is an extension of lattice logic, and bilattice logic is an extension of paraconsistent quantum logic. Monosequent system is a sequent calculus based on the restricted sequent that contains exactly one formula in both the antecedent and succedent. It is known that a completeness theorem with respect to a lattice-valued semantics holds for a monosequent system for lattice logic. A completeness theorem with respect (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Kripke-Completeness and Cut-elimination Theorems for Intuitionistic Paradefinite Logics With and Without Quasi-Explosion.Norihiro Kamide - 2020 - Journal of Philosophical Logic 49 (6):1185-1212.
    Two intuitionistic paradefinite logics N4C and N4C+ are introduced as Gentzen-type sequent calculi. These logics are regarded as a combination of Nelson’s paraconsistent four-valued logic N4 and Wansing’s basic constructive connexive logic C. The proposed logics are also regarded as intuitionistic variants of Arieli, Avron, and Zamansky’s ideal paraconistent four-valued logic 4CC. The logic N4C has no quasi-explosion axiom that represents a relationship between conflation and paraconsistent negation, but the logic N4C+ has this axiom. The Kripke-completeness and cut-elimination theorems for (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Nelson's paraconsistent logics.Seiki Akama - 1999 - Logic and Logical Philosophy 7:101.
    David Nelson’s constructive logics with strong negation may beviewed as alternative paraconsistent logic. These logics have been developedbefore da Costa’s works. We address some philosophical aspects of Nelson’slogics and give technical results concerning Kripke models and tableau calculi. We also suggest possible applications of paraconsistent constructivelogics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation