Switch to: References

Add citations

You must login to add citations.
  1. Dedekind's Abstract Concepts: Models and Mappings.Wilfried Sieg & Dirk Schlimm - 2014 - Philosophia Mathematica (3):nku021.
    Dedekind's mathematical work is integral to the transformation of mathematics in the nineteenth century and crucial for the emergence of structuralist mathematics in the twentieth century. We investigate the essential components of what Emmy Noether called, his ‘axiomatic standpoint’: abstract concepts, models, and mappings.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Argumentation in Mathematical Practice.Andrew Aberdein & Zoe Ashton - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2665-2687.
    Formal logic has often been seen as uniquely placed to analyze mathematical argumentation. While formal logic is certainly necessary for a complete understanding of mathematical practice, it is not sufficient. Important aspects of mathematical reasoning closely resemble patterns of reasoning in nonmathematical domains. Hence the tools developed to understand informal reasoning, collectively known as argumentation theory, are also applicable to much mathematical argumentation. This chapter investigates some of the details of that application. Consideration is given to the many contrasting meanings (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Three Roles of Empirical Information in Philosophy: Intuitions on Mathematics do Not Come for Free.Deniz Sarikaya, José Antonio Pérez-Escobar & Deborah Kant - 2021 - Kriterion – Journal of Philosophy 35 (3):247-278.
    This work gives a new argument for ‘Empirical Philosophy of Mathematical Practice’. It analyses different modalities on how empirical information can influence philosophical endeavours. We evoke the classical dichotomy between “armchair” philosophy and empirical/experimental philosophy, and claim that the latter should in turn be subdivided in three distinct styles: Apostate speculator, Informed analyst, and Freeway explorer. This is a shift of focus from the source of the information towards its use by philosophers. We present several examples from philosophy of mind/science (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Reliability of mathematical inference.Jeremy Avigad - 2020 - Synthese 198 (8):7377-7399.
    Of all the demands that mathematics imposes on its practitioners, one of the most fundamental is that proofs ought to be correct. It has been common since the turn of the twentieth century to take correctness to be underwritten by the existence of formal derivations in a suitable axiomatic foundation, but then it is hard to see how this normative standard can be met, given the differences between informal proofs and formal derivations, and given the inherent fragility and complexity of (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • How to infer explanations from computer simulations.Florian J. Boge - 2020 - Studies in History and Philosophy of Science Part A 82:25-33.
    Computer simulations are involved in numerous branches of modern science, and science would not be the same without them. Yet the question of how they can explain real-world processes remains an issue of considerable debate. In this context, a range of authors have highlighted the inferences back to the world that computer simulations allow us to draw. I will first characterize the precise relation between computer and target of a simulation that allows us to draw such inferences. I then argue (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Resources for Research on Analogy: A Multi-disciplinary Guide.Marcello Guarini, Amy Butchart, Paul Simard Smith & Andrei Moldovan - 2009 - Informal Logic 29 (2):84-197.
    Work on analogy has been done from a number of disciplinary perspectives throughout the history of Western thought. This work is a multidisciplinary guide to theorizing about analogy. It contains 1,406 references, primarily to journal articles and monographs, and primarily to English language material. classical through to contemporary sources are included. The work is classified into eight different sections (with a number of subsections). A brief introduction to each section is provided. Keywords and key expressions of importance to research on (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Axioms in Mathematical Practice.Dirk Schlimm - 2013 - Philosophia Mathematica 21 (1):37-92.
    On the basis of a wide range of historical examples various features of axioms are discussed in relation to their use in mathematical practice. A very general framework for this discussion is provided, and it is argued that axioms can play many roles in mathematics and that viewing them as self-evident truths does not do justice to the ways in which mathematicians employ axioms. Possible origins of axioms and criteria for choosing axioms are also examined. The distinctions introduced aim at (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • On the creative role of axiomatics. The discovery of lattices by Schröder, Dedekind, Birkhoff, and others.Dirk Schlimm - 2011 - Synthese 183 (1):47-68.
    Three different ways in which systems of axioms can contribute to the discovery of new notions are presented and they are illustrated by the various ways in which lattices have been introduced in mathematics by Schröder et al. These historical episodes reveal that the axiomatic method is not only a way of systematizing our knowledge, but that it can also be used as a fruitful tool for discovering and introducing new mathematical notions. Looked at it from this perspective, the creative (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Argument of Mathematics.Andrew Aberdein & Ian J. Dove (eds.) - 2013 - Dordrecht, Netherland: Springer.
    Written by experts in the field, this volume presents a comprehensive investigation into the relationship between argumentation theory and the philosophy of mathematical practice. Argumentation theory studies reasoning and argument, and especially those aspects not addressed, or not addressed well, by formal deduction. The philosophy of mathematical practice diverges from mainstream philosophy of mathematics in the emphasis it places on what the majority of working mathematicians actually do, rather than on mathematical foundations. -/- The book begins by first challenging the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A new look at analogical reasoning: Paul F. A. Bartha: By parallel reasoning: The construction and evaluation of analogical arguments. New York: Oxford University Press, 2010, x+354pp, US$74.00 HB.Dirk Schlimm - 2011 - Metascience 21 (1):197-201.
    A new look at analogical reasoning Content Type Journal Article Pages 1-5 DOI 10.1007/s11016-011-9563-z Authors Dirk Schlimm, Department of Philosophy, McGill University, Montreal, QC H3A 2T7, Canada Journal Metascience Online ISSN 1467-9981 Print ISSN 0815-0796.
    Download  
     
    Export citation  
     
    Bookmark  
  • Developments in Research on Mathematical Practice and Cognition.Alison Pease, Markus Guhe & Alan Smaill - 2013 - Topics in Cognitive Science 5 (2):224-230.
    We describe recent developments in research on mathematical practice and cognition and outline the nine contributions in this special issue of topiCS. We divide these contributions into those that address (a) mathematical reasoning: patterns, levels, and evaluation; (b) mathematical concepts: evolution and meaning; and (c) the number concept: representation and processing.
    Download  
     
    Export citation  
     
    Bookmark   2 citations