Switch to: References

Add citations

You must login to add citations.
  1. Gödel's path from the incompleteness theorems (1931) to phenomenology (1961).Richard Tieszen - 1998 - Bulletin of Symbolic Logic 4 (2):181-203.
    In a lecture manuscript written around 1961, Gödel describes a philosophical path from the incompleteness theorems to Husserl's phenomenology. It is known that Gödel began to study Husserl's work in 1959 and that he continued to do so for many years. During the 1960s, for example, he recommended the sixth investigation of Husserl's Logical Investigations to several logicians for its treatment of categorial intuition. While Gödel may not have been satisfied with what he was able to obtain from philosophy and (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Incompleteness and Computability: An Open Introduction to Gödel's Theorems.Richard Zach - 2019 - Open Logic Project.
    Textbook on Gödel’s incompleteness theorems and computability theory, based on the Open Logic Project. Covers recursive function theory, arithmetization of syntax, the first and second incompleteness theorem, models of arithmetic, second-order logic, and the lambda calculus.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Sets, Logic, Computation: An Open Introduction to Metalogic.Richard Zach - 2019 - Open Logic Project.
    An introductory textbook on metalogic. It covers naive set theory, first-order logic, sequent calculus and natural deduction, the completeness, compactness, and Löwenheim-Skolem theorems, Turing machines, and the undecidability of the halting problem and of first-order logic. The audience is undergraduate students with some background in formal logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the failure of mathematics' philosophy: Review of P. Maddy, Realism in Mathematics; and C. Chihara, Constructibility and Mathematical Existence.David Charles McCarty - 1993 - Synthese 96 (2):255-291.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Gödel’s Cantorianism.Claudio Ternullo - 2015 - In E.-M. Engelen (ed.), Kurt Gödel: Philosopher-Scientist. Presses Universitaires de Provence. pp. 417-446.
    Gödel’s philosophical conceptions bear striking similarities to Cantor’s. Although there is no conclusive evidence that Gödel deliberately used or adhered to Cantor’s views, one can successfully reconstruct and see his “Cantorianism” at work in many parts of his thought. In this paper, I aim to describe the most prominent conceptual intersections between Cantor’s and Gödel’s thought, particularly on such matters as the nature and existence of mathematical entities (sets), concepts, Platonism, the Absolute Infinite, the progress and inexhaustibility of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Gödel's Incompleteness Theorems.Panu Raatikainen - 2013 - The Stanford Encyclopedia of Philosophy (Winter 2013 Edition), Edward N. Zalta (Ed.).
    Gödel's two incompleteness theorems are among the most important results in modern logic, and have deep implications for various issues. They concern the limits of provability in formal axiomatic theories. The first incompleteness theorem states that in any consistent formal system F within which a certain amount of arithmetic can be carried out, there are statements of the language of F which can neither be proved nor disproved in F. According to the second incompleteness theorem, such a formal system cannot (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Undefinability of truth. the problem of priority:tarski vs gödel.Roman Murawski - 1998 - History and Philosophy of Logic 19 (3):153-160.
    The paper is devoted to the discussion of some philosophical and historical problems connected with the theorem on the undefinability of the notion of truth. In particular the problem of the priority of proving this theorem will be considered. It is claimed that Tarski obtained this theorem independently though he made clear his indebtedness to Gödel’s methods. On the other hand, Gödel was aware of the formal undefinability of truth in 1931, but he did not publish this result. Reasons for (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • On causality as the fundamental concept of Gödel’s philosophy.Srećko Kovač - 2020 - Synthese 197 (4):1803-1838.
    This paper proposes a possible reconstruction and philosophical-logical clarification of Gödel's idea of causality as the philosophical fundamental concept. The results are based on Gödel's published and non-published texts (including Max Phil notebooks), and are established on the ground of interconnections of Gödel's dispersed remarks on causality, as well as on the ground of his general philosophical views. The paper is logically informal but is connected with already achieved results in the formalization of a causal account of Gödel's onto-theological theory. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Godel Meets Carnap: A Prototypical Discourse on Science and Religion.Alfred Gierer - 1997 - Zygon 32 (2):207-217.
    Modern science, based on the laws of physics, claims validity for all events in space and time. However, it also reveals its own limitations, such as the indeterminacy of quantum physics, the limits of decidability, and, presumably, limits of decodability of the mind-brain relationship. At the philosophical level, these intrinsic limitations allow for different interpretations of the relation between human cognition and the natural order. In particular, modern science may be logically consistent with religious as well as agnostic views of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Strong axioms of infinity in NFU.M. Randall Holmes - 2001 - Journal of Symbolic Logic 66 (1):87-116.
    This paper discusses a sequence of extensions ofNFU, Jensen's improvement of Quine's set theory “New Foundations” (NF) of [16].The original theoryNFof Quine continues to present difficulties. After 60 years of intermittent investigation, it is still not known to be consistent relative to any set theory in which we have confidence. Specker showed in [20] thatNFdisproves Choice (and so proves Infinity). Even if one assumes the consistency ofNF, one is hampered by the lack of powerful methods for proofs of consistency and (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • How Godel's theorem supports the possibility of machine intelligence.Taner Edis - 1998 - Minds and Machines 8 (2):251-262.
    Gödel's Theorem is often used in arguments against machine intelligence, suggesting humans are not bound by the rules of any formal system. However, Gödelian arguments can be used to support AI, provided we extend our notion of computation to include devices incorporating random number generators. A complete description scheme can be given for integer functions, by which nonalgorithmic functions are shown to be partly random. Not being restricted to algorithms can be accounted for by the availability of an arbitrary random (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Husserl and gödel’s incompleteness theorems.Mirja Hartimo - 2017 - Review of Symbolic Logic 10 (4):638-650.
    The paper examines Husserl’s interactions with logicians in the 1930s in order to assess Husserl’s awareness of Gödel’s incompleteness theorems. While there is no mention about the results in Husserl’s known exchanges with Hilbert, Weyl, or Zermelo, the most likely source about them for Husserl is Felix Kaufmann (1895–1949). Husserl’s interactions with Kaufmann show that Husserl may have learned about the results from him, but not necessarily so. Ultimately Husserl’s reading marks on Friedrich Waismann’s Einführung in das mathematische Denken: die (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Maximality Principles in Set Theory.Luca Incurvati - 2017 - Philosophia Mathematica 25 (2):159-193.
    In set theory, a maximality principle is a principle that asserts some maximality property of the universe of sets or some part thereof. Set theorists have formulated a variety of maximality principles in order to settle statements left undecided by current standard set theory. In addition, philosophers of mathematics have explored maximality principles whilst attempting to prove categoricity theorems for set theory or providing criteria for selecting foundational theories. This article reviews recent work concerned with the formulation, investigation and justification (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)An Essay on the Ancient Ideal of ‘Enraonar’.Enric Trillas & María G. Navarro - 2015 - Archives of Philosophy and History of Soft Computing (I):1-28.
    ‘Reasoning’ can be considered a general concept that, upon speaking, is the ‘enraonar’, a Catalan word that should not be mistaken with ‘explain’ nor with ‘discuss’ which imply more detail, and cover different situations. This article is presented as an essay on the ancient ideal of ‘enraonar’. To that end, it is explained in what sense ‘enraonar’ and reason are one of the most complex phenomena thought has to deal with. Here it is argued that these natural phenomena require a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (2 other versions)On the philosophical development of Kurt gödel.Mark van Atten & Juliette Kennedy - 2003 - Bulletin of Symbolic Logic 9 (4):425-476.
    It is by now well known that Gödel first advocated the philosophy of Leibniz and then, since 1959, that of Husserl. This raises three questions:1.How is this turn to Husserl to be interpreted? Is it a dismissal of the Leibnizian philosophy, or a different way to achieve similar goals?2.Why did Gödel turn specifically to the later Husserl's transcendental idealism?3.Is there any detectable influence from Husserl on Gödel's writings?Regarding the first question, Wang [96, p.165] reports that Gödel ‘[saw] in Husserl's work (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Russell and gödel.Alasdair Urquhart - 2016 - Bulletin of Symbolic Logic 22 (4):504-520.
    This paper surveys the interactions between Russell and Gödel, both personal and intellectual. After a description of Russell’s influence on Gödel, it concludes with a discussion of Russell’s reaction to the incompleteness theorems.
    Download  
     
    Export citation  
     
    Bookmark  
  • On Logic in the Law: "Something, but not All".Susan Haack - 2007 - Ratio Juris 20 (1):1-31.
    In 1880, when Oliver Wendell Holmes (later to be a Justice of the U.S. Supreme Court) criticized the logical theology of law articulated by Christopher Columbus Langdell (the first Dean of Harvard Law School), neither Holmes nor Langdell was aware of the revolution in logic that had begun, the year before, with Frege's Begriffsschrift. But there is an important element of truth in Holmes's insistence that a legal system cannot be adequately understood as a system of axioms and corollaries; and (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • In Memoriam: Hao Wang 1921–1995.Charles Parsons - 1996 - Bulletin of Symbolic Logic 2 (1):108-111.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Plausible Impact of Phenomenology on Gödel's Thoughts.Stathis Livadas - 2019 - Theoria 85 (2):145-170.
    It is well known that in his later years Gödel turned to a systematic reading of phenomenology, whose founder, Edmund Husserl, was highly esteem as a philosopher who sought to elevate philosophy to the standards of a rigorous science. For reasons purportedly related to his earlier attraction to Leibnizian monadology, Gödel was particularly interested in Husserl's transcendental phenomenology and the way it may shape the discussion on the nature of mathematical‐logical objects and the meaning and internal coherence of primitive terms (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Wittgenstein and Gödel: An Attempt to Make ‘Wittgenstein’s Objection’ Reasonable†.Timm Lampert - 2018 - Philosophia Mathematica 26 (3):324-345.
    According to some scholars, such as Rodych and Steiner, Wittgenstein objects to Gödel’s undecidability proof of his formula $$G$$, arguing that given a proof of $$G$$, one could relinquish the meta-mathematical interpretation of $$G$$ instead of relinquishing the assumption that Principia Mathematica is correct. Most scholars agree that such an objection, be it Wittgenstein’s or not, rests on an inadequate understanding of Gödel’s proof. In this paper, I argue that there is a possible reading of such an objection that is, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Shaping the Enemy: Foundational Labelling by L.E.J. Brouwer and A. Heyting.Miriam Franchella - 2018 - History and Philosophy of Logic 40 (2):152-181.
    The use of the three labels to denote the three foundational schools of the early twentieth century are now part of literature. Yet, neither their number nor the...
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mark Van atten. Brouwer meets Husserl: On the phenomenology of choice sequences.Miriam Franchella - 2008 - Philosophia Mathematica 16 (2):276-281.
    This book summarizes the intense research that the author performed for his Ph.D. thesis , revised and with the addition of an intuitionistic critique of Husserl's concept of number. His starting point consisted of a double conviction: 1) Brouwerian intuitionism is a valid way of doing mathematics but is grounded on a weak philosophy; 2) Husserlian phenomenology can provide a suitable philosophical ground for intuitionism. In order to let intuitionism and phenomenology match, he had to solve in general two problems: (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the mathematical nature of logic, featuring P. Bernays and K. Gödel.Oran Magal - unknown
    The paper examines the interrelationship between mathematics and logic, arguing that a central characteristic of each has an essential role within the other. The first part is a reconstruction of and elaboration on Paul Bernays’ argument, that mathematics and logic are based on different directions of abstraction from content, and that mathematics, at its core it is a study of formal structures. The notion of a study of structure is clarified by the examples of Hilbert’s work on the axiomatization of (...)
    Download  
     
    Export citation  
     
    Bookmark