Switch to: References

Citations of:

Zeno’s paradox of measure

In Robert S. Cohen & Larry Laudan (eds.), Physics, Philosophy and Psychoanalysis: Essays in Honor of Adolf Grünbaum. D. Reidel. pp. 223--254 (1983)

Add citations

You must login to add citations.
  1. (1 other version)Infinitesimal Probabilities.Sylvia Wenmackers - 2019 - In Richard Pettigrew & Jonathan Weisberg (eds.), The Open Handbook of Formal Epistemology. PhilPapers Foundation. pp. 199-265.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Curve-Fitting for Bayesians?Gordon Belot - 2017 - British Journal for the Philosophy of Science 68 (3):689-702.
    Bayesians often assume, suppose, or conjecture that for any reasonable explication of the notion of simplicity a prior can be designed that will enforce a preference for hypotheses simpler in just that sense. But it is shown here that there are simplicity-driven approaches to curve-fitting problems that cannot be captured within the orthodox Bayesian framework.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Banach-Tarski Paradox.Ulrich Meyer - 2023 - Logique Et Analyse 261:41–53.
    Emile Borel regards the Banach-Tarski Paradox as a reductio ad absurdum of the Axiom of Choice. Peter Forrest instead blames the assumption that physical space has a similar structure as the real numbers. This paper argues that Banach and Tarski's result is not paradoxical and that it merely illustrates a surprising feature of the continuum: dividing a spatial region into disjoint pieces need not preserve volume.
    Download  
     
    Export citation  
     
    Bookmark  
  • How can a line segment with extension be composed of extensionless points?Brian Reese, Michael Vazquez & Scott Weinstein - 2022 - Synthese 200 (2):1-28.
    We provide a new interpretation of Zeno’s Paradox of Measure that begins by giving a substantive account, drawn from Aristotle’s text, of the fact that points lack magnitude. The main elements of this account are (1) the Axiom of Archimedes which states that there are no infinitesimal magnitudes, and (2) the principle that all assignments of magnitude, or lack thereof, must be grounded in the magnitude of line segments, the primary objects to which the notion of linear magnitude applies. Armed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-Measurability, Imprecise Credences, and Imprecise Chances.Yoaav Isaacs, Alan Hájek & John Hawthorne - 2021 - Mind 131 (523):892-916.
    – We offer a new motivation for imprecise probabilities. We argue that there are propositions to which precise probability cannot be assigned, but to which imprecise probability can be assigned. In such cases the alternative to imprecise probability is not precise probability, but no probability at all. And an imprecise probability is substantially better than no probability at all. Our argument is based on the mathematical phenomenon of non-measurable sets. Non-measurable propositions cannot receive precise probabilities, but there is a natural (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Do simple infinitesimal parts solve Zeno’s paradox of measure?Lu Chen - 2019 - Synthese 198 (5):4441-4456.
    In this paper, I develop an original view of the structure of space—called infinitesimal atomism—as a reply to Zeno’s paradox of measure. According to this view, space is composed of ultimate parts with infinitesimal size, where infinitesimals are understood within the framework of Robinson’s nonstandard analysis. Notably, this view satisfies a version of additivity: for every region that has a size, its size is the sum of the sizes of its disjoint parts. In particular, the size of a finite region (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Divisibility and Extension: a Note on Zeno’s Argument Against Plurality and Modern Mereology.Claudio Calosi & Vincenzo Fano - 2015 - Acta Analytica 30 (2):117-132.
    In this paper, we address an infamous argument against divisibility that dates back to Zeno. There has been an incredible amount of discussion on how to understand the critical notions of divisibility, extension, and infinite divisibility that are crucial for the very formulation of the argument. The paper provides new and rigorous definitions of those notions using the formal theories of parthood and location. Also, it provides a new solution to the paradox of divisibility which does not face some threats (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Physical probabilities.Peter Milne - 1987 - Synthese 73 (2):329 - 359.
    A conception of probability as an irreducible feature of the physical world is outlined. Propensity analyses of probability are examined and rejected as both formally and conceptually inadequate. It is argued that probability is a non-dispositional property of trial-types; probabilities are attributed to outcomes as event-types. Brier's Rule in an objectivist guise is used to forge a connection between physical and subjective probabilities. In the light of this connection there are grounds for supposing physical probability to obey some standard set (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Infinitesimal Gunk.Lu Chen - 2020 - Journal of Philosophical Logic 49 (5):981-1004.
    In this paper, I advance an original view of the structure of space called Infinitesimal Gunk. This view says that every region of space can be further divided and some regions have infinitesimal size, where infinitesimals are understood in the framework of Robinson’s nonstandard analysis. This view, I argue, provides a novel reply to the inconsistency arguments proposed by Arntzenius and Russell, which have troubled a more familiar gunky approach. Moreover, it has important advantages over the alternative views these authors (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Infinitesimal Probabilities.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2016 - British Journal for the Philosophy of Science 69 (2):509-552.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general. _1_ Introduction _2_ The Limits of Classical Probability Theory _2.1_ Classical probability functions _2.2_ Limitations _2.3_ Infinitesimals to the rescue? _3_ NAP Theory _3.1_ First four axioms of NAP _3.2_ Continuity and conditional probability _3.3_ The final axiom of NAP (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Logic, Mathematics, Philosophy, Vintage Enthusiasms: Essays in Honour of John L. Bell.David DeVidi, Michael Hallett & Peter Clark (eds.) - 2011 - Dordrecht, Netherland: Springer.
    The volume includes twenty-five research papers presented as gifts to John L. Bell to celebrate his 60th birthday by colleagues, former students, friends and admirers. Like Bell’s own work, the contributions cross boundaries into several inter-related fields. The contributions are new work by highly respected figures, several of whom are among the key figures in their fields. Some examples: in foundations of maths and logic ; analytical philosophy, philosophy of science, philosophy of mathematics and decision theory and foundations of economics. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • De finetti, countable additivity, consistency and coherence.Colin Howson - 2008 - British Journal for the Philosophy of Science 59 (1):1-23.
    Many people believe that there is a Dutch Book argument establishing that the principle of countable additivity is a condition of coherence. De Finetti himself did not, but for reasons that are at first sight perplexing. I show that he rejected countable additivity, and hence the Dutch Book argument for it, because countable additivity conflicted with intuitive principles about the scope of authentic consistency constraints. These he often claimed were logical in nature, but he never attempted to relate this idea (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • A note on solidity.Ernest W. Adams - 1988 - Australasian Journal of Philosophy 66 (4):512 – 516.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Updating, supposing, and maxent.Brian Skyrms - 1987 - Theory and Decision 22 (3):225-246.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Strict coherence, sigma coherence and the metaphysics of quantity.Brian Skyrms - 1995 - Philosophical Studies 77 (1):39-55.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Scotching the dutch book argument.Peter Milne - 1990 - Erkenntnis 32 (1):105--26.
    Consistent application of coherece arguments shows that fair betting quotients are subject to constraints that are too stringent to allow their identification with either degrees of belief or probabilities. The pivotal role of fair betting quotients in the Dutch Book Argument, which is said to demonstrate that a rational agent's degrees of belief are probabilities, is thus undermined from both sides.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • An Essay in Honor of Adolf Grünbaum’s Ninetieth Birthday: A Reexamination of Zeno’s Paradox of Extension.Philip Ehrlich - 2014 - Philosophy of Science 81 (4):654-675.
    We suggest that, far from establishing an inconsistency in the standard theory of the geometrical linear continuum, Zeno’s Paradox of Extension merely establishes an inconsistency between the standard theory of geometrical magnitude and a misguided system of length measurement. We further suggest that our resolution of Zeno’s paradox is superior to Adolf Grünbaum’s now standard resolution based on Lebesgue measure theory.
    Download  
     
    Export citation  
     
    Bookmark   2 citations