Switch to: References

Add citations

You must login to add citations.
  1. The trials of life: Natural selection and random drift.Denis M. Walsh, Andre Ariew & Tim Lewens - 2002 - Philosophy of Science 69 (3):452-473.
    We distinguish dynamical and statistical interpretations of evolutionary theory. We argue that only the statistical interpretation preserves the presumed relation between natural selection and drift. On these grounds we claim that the dynamical conception of evolutionary theory as a theory of forces is mistaken. Selection and drift are not forces. Nor do selection and drift explanations appeal to the (sub-population-level) causes of population level change. Instead they explain by appeal to the statistical structure of populations. We briefly discuss the implications (...)
    Download  
     
    Export citation  
     
    Bookmark   197 citations  
  • Four Pillars of Statisticalism.Denis M. Walsh, André Ariew & Mohan Matthen - 2017 - Philosophy, Theory, and Practice in Biology 9 (1):1-18.
    Over the past fifteen years there has been a considerable amount of debate concerning what theoretical population dynamic models tell us about the nature of natural selection and drift. On the causal interpretation, these models describe the causes of population change. On the statistical interpretation, the models of population dynamics models specify statistical parameters that explain, predict, and quantify changes in population structure, without identifying the causes of those changes. Selection and drift are part of a statistical description of population (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Fitness, probability and the principles of natural selection.Frederic Bouchard & Alexander Rosenberg - 2004 - British Journal for the Philosophy of Science 55 (4):693-712.
    We argue that a fashionable interpretation of the theory of natural selection as a claim exclusively about populations is mistaken. The interpretation rests on adopting an analysis of fitness as a probabilistic propensity which cannot be substantiated, draws parallels with thermodynamics which are without foundations, and fails to do justice to the fundamental distinction between drift and selection. This distinction requires a notion of fitness as a pairwise comparison between individuals taken two at a time, and so vitiates the interpretation (...)
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • A New Foundation for the Propensity Interpretation of Fitness.Charles H. Pence & Grant Ramsey - 2013 - British Journal for the Philosophy of Science 64 (4):851-881.
    The propensity interpretation of fitness (PIF) is commonly taken to be subject to a set of simple counterexamples. We argue that three of the most important of these are not counterexamples to the PIF itself, but only to the traditional mathematical model of this propensity: fitness as expected number of offspring. They fail to demonstrate that a new mathematical model of the PIF could not succeed where this older model fails. We then propose a new formalization of the PIF that (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Not a sure thing: Fitness, probability, and causation.Denis M. Walsh - 2010 - Philosophy of Science 77 (2):147-171.
    In evolutionary biology changes in population structure are explained by citing trait fitness distribution. I distinguish three interpretations of fitness explanations—the Two‐Factor Model, the Single‐Factor Model, and the Statistical Interpretation—and argue for the last of these. These interpretations differ in their degrees of causal commitment. The first two hold that trait fitness distribution causes population change. Trait fitness explanations, according to these interpretations, are causal explanations. The last maintains that trait fitness distribution correlates with population change but does not cause (...)
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • The confusions of fitness.André Ariew & Richard C. Lewontin - 2004 - British Journal for the Philosophy of Science 55 (2):347-363.
    The central point of this essay is to demonstrate the incommensurability of ‘Darwinian fitness’ with the numeric values associated with reproductive rates used in population genetics. While sometimes both are called ‘fitness’, they are distinct concepts coming from distinct explanatory schemes. Further, we try to outline a possible answer to the following question: from the natural properties of organisms and a knowledge of their environment, can we construct an algorithm for a particular kind of organismic life-history pattern that itself will (...)
    Download  
     
    Export citation  
     
    Bookmark   85 citations  
  • Evolutionary theory and the reality of macro probabilities.Elliott Sober - 2010 - In Ellery Eells & James H. Fetzer, The Place of Probability in Science: In Honor of Ellery Eells (1953-2006). Springer. pp. 133--60.
    Evolutionary theory is awash with probabilities. For example, natural selection is said to occur when there is variation in fitness, and fitness is standardly decomposed into two components, viability and fertility, each of which is understood probabilistically. With respect to viability, a fertilized egg is said to have a certain chance of surviving to reproductive age; with respect to fertility, an adult is said to have an expected number of offspring.1 There is more to evolutionary theory than the theory of (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • A critical review of the statisticalist debate.Jun Otsuka - 2016 - Biology and Philosophy 31 (4):459-482.
    Over the past decade philosophers of biology have discussed whether evolutionary theory is a causal theory or a phenomenological study of evolution based solely on the statistical features of a population. This article reviews this controversy from three aspects, respectively concerning the assumptions, applications, and explanations of evolutionary theory, with a view to arriving at a definite conclusion in each contention. In so doing I also argue that an implicit methodological assumption shared by both sides of the debate, namely the (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Trait fitness is not a propensity, but fitness variation is.Elliott Sober - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (3):336-341.
    The propensity interpretation of fitness draws on the propensity interpretation of probability, but advocates of the former have not attended sufficiently to problems with the latter. The causal power of C to bring about E is not well-represented by the conditional probability Pr. Since the viability fitness of trait T is the conditional probability Pr, the viability fitness of the trait does not represent the degree to which having the trait causally promotes surviving. The same point holds for fertility fitness. (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Resource Rationality.Thomas F. Icard - manuscript
    Theories of rational decision making often abstract away from computational and other resource limitations faced by real agents. An alternative approach known as resource rationality puts such matters front and center, grounding choice and decision in the rational use of finite resources. Anticipated by earlier work in economics and in computer science, this approach has recently seen rapid development and application in the cognitive sciences. Here, the theory of rationality plays a dual role, both as a framework for normative assessment (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Darwinism without populations: a more inclusive understanding of the “Survival of the Fittest”.Frédéric Bouchard - 2011 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 42 (1):106-114.
    Following Wallace’s suggestion, Darwin framed his theory using Spencer’s expression “survival of the fittest”. Since then, fitness occupies a significant place in the conventional understanding of Darwinism, even though the explicit meaning of the term ‘fitness’ is rarely stated. In this paper I examine some of the different roles that fitness has played in the development of the theory. Whereas the meaning of fitness was originally understood in ecological terms, it took a statistical turn in terms of reproductive success throughout (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Block Fitness.Grant Ramsey - 2006 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 37 (3):484-498.
    There are three related criteria that a concept of fitness should be able to meet: it should render the principle of natural selection non-tautologous and it should be explanatory and predictive. I argue that for fitness to be able to fulfill these criteria, it cannot be a property that changes over the course of an individual's life. Rather, I introduce a fitness concept--Block Fitness--and argue that an individual's genes and environment fix its fitness in such a way that each individual's (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Tracking Eudaimonia.Paul Bloomfield - 2018 - Philosophy, Theory, and Practice in Biology 10 (2).
    A basic challenge to naturalistic moral realism is that, even if moral properties existed, there would be no way to naturalistically represent or track them. Here, the basic structure for a tracking account of moral epistemology is given in empirically respectable terms, based on a eudaimonist conception of morality. The goal is to show how this form of moral realism can be seen as consistent with the details of evolutionary biology as well as being amenable to the most current understanding (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • How Bayesian Confirmation Theory Handles the Paradox of the Ravens.Branden Fitelson & James Hawthorne - 2010 - In Ellery Eells & James H. Fetzer, The Place of Probability in Science: In Honor of Ellery Eells (1953-2006). Springer. pp. 247--275.
    The Paradox of the Ravens (a.k.a,, The Paradox of Confirmation) is indeed an old chestnut. A great many things have been written and said about this paradox and its implications for the logic of evidential support. The first part of this paper will provide a brief survey of the early history of the paradox. This will include the original formulation of the paradox and the early responses of Hempel, Goodman, and Quine. The second part of the paper will describe attempts (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • The natures of selection.Tim Lewens - 2010 - British Journal for the Philosophy of Science 61 (2):313-333.
    Elliott Sober and his defenders think of selection, drift, mutation, and migration as distinct evolutionary forces. This paper exposes an ambiguity in Sober's account of the force of selection: sometimes he appears to equate the force of selection with variation in fitness, sometimes with ‘selection for properties’. Sober's own account of fitness as a property analogous to life-expectancy shows how the two conceptions come apart. Cases where there is selection against variance in offspring number also show that selection and drift (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Are biological traits explained by their 'selected effect' functions?Joshua R. Christie, Carl Brusse, Pierrick Bourrat, Peter Takacs & Paul Edmund Griffiths - forthcoming - Australasian Philosophical Review.
    The selected effects or ‘etiological’ theory of Proper function is a naturalistic and realist account of biological teleology. It is used to analyse normativity in philosophy of language, philosophy of mind, philosophy of medicine and elsewhere. The theory has been developed with a simple and intuitive view of natural selection. Traits are selected because of their positive effects on the fitness of the organisms that have them. These ‘selected effects’ are the Proper functions of the traits. Proponents argue that this (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • From survivors to replicators: evolution by natural selection revisited.Pierrick Bourrat - 2014 - Biology and Philosophy 29 (4):517-538.
    For evolution by natural selection to occur it is classically admitted that the three ingredients of variation, difference in fitness and heredity are necessary and sufficient. In this paper, I show using simple individual-based models, that evolution by natural selection can occur in populations of entities in which neither heredity nor reproduction are present. Furthermore, I demonstrate by complexifying these models that both reproduction and heredity are predictable Darwinian products (i.e. complex adaptations) of populations initially lacking these two properties but (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Probability in Biology: The Case of Fitness.Roberta L. Millstein - 2016 - In Alan Hájek & Christopher Hitchcock, The Oxford Handbook of Probability and Philosophy. Oxford: Oxford University Press. pp. 601-622.
    I argue that the propensity interpretation of fitness, properly understood, not only solves the explanatory circularity problem and the mismatch problem, but can also withstand the Pandora’s box full of problems that have been thrown at it. Fitness is the propensity (i.e., probabilistic ability, based on heritable physical traits) for organisms or types of organisms to survive and reproduce in particular environments and in particular populations for a specified number of generations; if greater than one generation, “reproduction” includes descendants of (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Fitness and the Twins.Elliott Sober - 2020 - Philosophy, Theory, and Practice in Biology 12 (1):1-13.
    Michael Scriven’s (1959) example of identical twins (who are said to be equal in fitness but unequal in their reproductive success) has been used by many philosophers of biology to discuss how fitness should be defined, how selection should be distinguished from drift, and how the environment in which a selection process occurs should be conceptualized. Here it is argued that evolutionary theory has no commitment, one way or the other, as to whether the twins are equally fit. This is (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The ‘niche’ in niche-based theorizing: much ado about nothing.Samantha Wakil & James Justus - 2022 - Biology and Philosophy 37 (2):1-21.
    The niche is allegedly the conceptual bedrock underpinning the most prominent, and some would say most important, theorizing in ecology. We argue this point of view is more aspirational than veridical. Rather than critically dissect existing definitions of the concept, the supposedly significant work it is thought to have done in ecology is our evaluative target. There is no denying the impressive mathematical sophistication and theoretical ingenuity of the ecological modeling that invokes ‘niche’ terminology. But despite the pervasive labeling, we (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • How Do Natural Selection and Random Drift Interact?Marshall Abrams - 2007 - Philosophy of Science 74 (5):666-679.
    One controversy about the existence of so called evolutionary forces such as natural selection and random genetic drift concerns the sense in which such “forces” can be said to interact. In this paper I explain how natural selection and random drift can interact. In particular, I show how population-level probabilities can be derived from individual-level probabilities, and explain the sense in which natural selection and drift are embodied in these population-level probabilities. I argue that whatever causal character the individual-level probabilities (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • The unity of fitness.Marshall Abrams - 2009 - Philosophy of Science 76 (5):750-761.
    It has been argued that biological fitness cannot be defined as expected number of offspring in all contexts. Some authors argue that fitness therefore merely satisfies a common schema or that no unified mathematical characterization of fitness is possible. I argue that comparative fitness must be relativized to an evolutionary effect; thus relativized, fitness can be given a unitary mathematical characterization in terms of probabilities of producing offspring and other effects. Such fitnesses will sometimes be defined in terms of probabilities (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Explaining Drift from a Deterministic Setting.Pierrick Bourrat - 2017 - Biological Theory 12 (1):27-38.
    Drift is often characterized in statistical terms. Yet such a purely statistical characterization is ambiguous for it can accept multiple physical interpretations. Because of this ambiguity it is important to distinguish what sorts of processes can lead to this statistical phenomenon. After presenting a physical interpretation of drift originating from the most popular interpretation of fitness, namely the propensity interpretation, I propose a different one starting from an analysis of the concept of drift made by Godfrey-Smith. Further on, I show (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The arithmetic mean of what? A Cautionary Tale about the Use of the Geometric Mean as a Measure of Fitness.Peter Takacs & Pierrick Bourrat - 2022 - Biology and Philosophy 37 (2):1-22.
    Showing that the arithmetic mean number of offspring for a trait type often fails to be a predictive measure of fitness was a welcome correction to the philosophical literature on fitness. While the higher mathematical moments of a probability-weighted offspring distribution can influence fitness measurement in distinct ways, the geometric mean number of offspring is commonly singled out as the most appropriate measure. For it is well-suited to a compounding process and is sensitive to variance in offspring number. The geometric (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On fitness.Costas B. Krimbas - 2004 - Biology and Philosophy 19 (2):185-203.
    The concept of fitness, central to population genetics and to the synthetic theory of evolution, is discussed. After a historical introduction on the origin of this concept, the current meaning of it in population genetics is examined: a cause of the selective process and its quantification. Several difficulties arise for its exact definition. Three adequacy criteria for such a definition are formulated. It is shown that it is impossible to formulate an adequate definition of fitness respecting these criteria. The propensity (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Driftability.Grant Ramsey - 2013 - Synthese 190 (17):3909-3928.
    In this paper, I argue (contra some recent philosophical work) that an objective distinction between natural selection and drift can be drawn. I draw this distinction by conceiving of drift, in the most fundamental sense, as an individual-level phenomenon. This goes against some other attempts to distinguish selection from drift, which have argued either that drift is a population-level process or that it is a population-level product. Instead of identifying drift with population-level features, the account introduced here can explain these (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)Levels, Time and Fitness in Evolutionary Transitions in Individuality.Pierrick Bourrat - 2015 - Philosophy, Theory, and Practice in Biology 7 (20150505).
    Yes, fitness is the central concept of evolutionary biology, but it is an elusive concept. Almost everyone who looks at it seriously comes out in a different place.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • How ecosystem evolution strengthens the case for functional pluralism.Frédéric Bouchard - 2013 - In Philippe Huneman, Functions: selection and mechanisms. Springer. pp. 83--95.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Propensity Interpretation of Fitness and the Propensity Interpretation of Probability.Isabelle Drouet & Francesca Merlin - 2015 - Erkenntnis 80 (S3):457-468.
    The paper provides a new critical perspective on the propensity interpretation of fitness, by investigating its relationship to the propensity interpretation of probability. Two main conclusions are drawn. First, the claim that fitness is a propensity cannot be understood properly: fitness is not a propensity in the sense prescribed by the propensity interpretation of probability. Second, this interpretation of probability is inessential for explanations proposed by the PIF in evolutionary biology. Consequently, interpreting the probabilistic dimension of fitness in terms of (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Is Organismic Fitness at the Basis of Evolutionary Theory?Charles H. Pence & Grant Ramsey - 2015 - Philosophy of Science 82 (5):1081-1091.
    Fitness is a central theoretical concept in evolutionary theory. Despite its importance, much debate has occurred over how to conceptualize and formalize fitness. One point of debate concerns the roles of organismic and trait fitness. In a recent addition to this debate, Elliott Sober argues that trait fitness is the central fitness concept, and that organismic fitness is of little value. In this paper, by contrast, we argue that it is organismic fitness that lies at the bases of both the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Fitness and Propensity’s Annulment?Marshall Abrams - 2007 - Biology and Philosophy 22 (1):115-130.
    Recent debate on the nature of probabilities in evolutionary biology has focused largely on the propensity interpretation of fitness (PIF), which defines fitness in terms of a conception of probability known as “propensity”. However, proponents of this conception of fitness have misconceived the role of probability in the constitution of fitness. First, discussions of probability and fitness have almost always focused on organism effect probability, the probability that an organism and its environment cause effects. I argue that much of the (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Organisms, Traits, and Population Subdivisions: Two Arguments against the Causal Conception of Fitness?Grant30 Ramsey - 2013 - British Journal for the Philosophy of Science 64 (3):589-608.
    A major debate in the philosophy of biology centers on the question of how we should understand the causal structure of natural selection. This debate is polarized into the causal and statistical positions. The main arguments from the statistical side are that a causal construal of the theory of natural selection's central concept, fitness, either (i) leads to inaccurate predictions about population dynamics, or (ii) leads to an incoherent set of causal commitments. In this essay, I argue that neither the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Understanding colonial traits using symbiosis research and ecosystem ecology.Frédéric Bouchard - 2009 - Biological Theory 4 (3):240-246.
    E. O. Wilson (1974: 54) describes the problem that social organisms pose: “On what bases do we distinguish the extremely modified members of an invertebrate colony from the organs of a metazoan animal?” This framing of the issue has inspired many to look more closely at how groups of organisms form and behave as emergent individuals. The possible existence of “superorganisms” test our best intuitions about what can count and act as genuine biological individuals and how we should study them. (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Fitness “kinematics”: biological function, altruism, and organism–environment development.Marshall Abrams - 2009 - Biology and Philosophy 24 (4):487-504.
    It’s recently been argued that biological fitness can’t change over the course of an organism’s life as a result of organisms’ behaviors. However, some characterizations of biological function and biological altruism tacitly or explicitly assume that an effect of a trait can change an organism’s fitness. In the first part of the paper, I explain that the core idea of changing fitness can be understood in terms of conditional probabilities defined over sequences of events in an organism’s life. The result (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • How Jerry Fodor slid down the slippery slope to Anti-Darwinism, and how we can avoid the same fate.Alex Rosenberg - 2013 - European Journal for Philosophy of Science 3 (1):1-17.
    There is only one physically possible process that builds and operates purposive systems in nature: natural selection. What it does is build and operate systems that look to us purposive, goal directed, teleological. There really are not any purposes in nature and no purposive processes ether. It is just one vast network of linked causal chains. Darwinian natural selection is the only process that could produce the appearance of purpose. That is why natural selection must have built and must continually (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Evolution.Roberta L. Millstein - 2017 - Stanford Encylopedia of Philosophy.
    Evolution in its contemporary meaning in biology typically refers to the changes in the proportions of biological types in a population over time (see the entry on the concept of evolution to 1872 for earlier meanings). As evolution is too large of a topic to address thoroughly in one entry, the primary goal of this entry is to serve as a broad overview of contemporary issues in evolution with links to other entries where more in-depth discussion can be found. The (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Fitness: static or dynamic?Peter Takacs & Pierrick Bourrat - 2021 - European Journal for Philosophy of Science 11 (4):1-20.
    The most consistent definition of fitness makes it a static property of organisms. However, this is not how fitness is used in many evolutionary models. In those models, fitness is permitted to vary with an organism’s circumstances. According to this second conception, fitness is dynamic. There is consequently tension between these two conceptions of fitness. One recently proposed solution suggests resorting to conditional properties. We argue, however, that this solution is unsatisfactory. Using a very simple model, we show that it (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Evolutionary Theory and the Epistemology of Science.Kevin McCain & Brad Weslake - 2013 - In Kostas Kampourakis, The Philosophy of Biology: a Companion for Educators. Dordrecht: Springer. pp. 101-119.
    Evolutionary theory is a paradigmatic example of a well-supported scientific theory. In this chapter we consider a number of objections to evolutionary theory, and show how responding to these objections reveals aspects of the way in which scientific theories are supported by evidence. Teaching these objections can therefore serve two pedagogical aims: students can learn the right way to respond to some popular arguments against evolutionary theory, and they can learn some basic features of the structure of scientific theories and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Can fitness differences be a cause of evolution?Grant Ramsey - 2013 - Philosophy, Theory, and Practice in Biology 5 (20130604):1-13.
    Biological fitness is a foundational concept in the theory of natural selection. Natural selection is often defined in terms of fitness differences as “any consistent difference in fitness (i.e., survival and reproduction) among phenotypically different biological entities” (Futuyma 1998, 349). And in Lewontin’s (1970) classic articulation of the theory of natural selection, he lists fitness differences as one of the necessary conditions for evolution by natural selection to occur. Despite this foundational position of fitness, there remains much debate over the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On geometric mean fitness: a reply to Takacs and Bourrat.Bengt Autzen & Samir Okasha - 2022 - Biology and Philosophy 37 (5):1-7.
    In a recent paper, Takacs and Bourrat (Biol Philos 37:12, 2022) examine the use of geometric mean reproductive output as a measure of biological fitness. We welcome Takacs and Bourrat’s scrutiny of a fitness definition that some philosophers have adopted uncritically. We also welcome Takacs and Bourrat’s attempt to marry the philosophical literature on fitness with the biological literature on mathematical measures of fitness. However, some of the main claims made by Takacs and Bourrat are not correct, while others are (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Probabilistic causality and causal generalizations.Daniel M. Hausman - 2010 - In Ellery Eells & James H. Fetzer, The Place of Probability in Science: In Honor of Ellery Eells (1953-2006). Springer. pp. 47--63.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Possibility of Infinitesimal Chances.Martin Barrett - 2010 - In Ellery Eells & James H. Fetzer, The Place of Probability in Science: In Honor of Ellery Eells (1953-2006). Springer. pp. 65--79.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Probability and objectivity in deterministic and indeterministic situations.James H. Fetzer - 1983 - Synthese 57 (3):367--86.
    This paper pursues the question, To what extent does the propensity approach to probability contribute to plausible solutions to various anomalies which occur in quantum mechanics? The position I shall defend is that of the three interpretations — the frequency, the subjective, and the propensity — only the third accommodates the possibility, in principle, of providing a realistic interpretation of ontic indeterminism. If these considerations are correct, then they lend support to Popper's contention that the propensity construction tends to remove (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • A causal dispositional account of fitness.Laura Nuño de la Rosa & Vanessa Triviño - 2016 - History and Philosophy of the Life Sciences 38 (3):1-18.
    The notion of fitness is usually equated to reproductive success. However, this actualist approach presents some difficulties, mainly the explanatory circularity problem, which have lead philosophers of biology to offer alternative definitions in which fitness and reproductive success are distinguished. In this paper, we argue that none of these alternatives is satisfactory and, inspired by Mumford and Anjum’s dispositional theory of causation, we offer a definition of fitness as a causal dispositional property. We argue that, under this framework, the distinctiveness (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • In What Sense Can There Be Evolution by Natural Selection Without Perfect Inheritance?Pierrick Bourrat - 2019 - International Studies in the Philosophy of Science 32 (1):13-31.
    ABSTRACTIn Darwinian Population and Natural Selection, Peter Godfrey-Smith brought the topic of natural selection back to the forefront of philosophy of biology, highlighting different issues surro...
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Toward a propensity interpretation of stochastic mechanism for the life sciences.Lane DesAutels - 2015 - Synthese 192 (9):2921-2953.
    In what follows, I suggest that it makes good sense to think of the truth of the probabilistic generalizations made in the life sciences as metaphysically grounded in stochastic mechanisms in the world. To further understand these stochastic mechanisms, I take the general characterization of mechanism offered by MDC :1–25, 2000) and explore how it fits with several of the going philosophical accounts of chance: subjectivism, frequentism, Lewisian best-systems, and propensity. I argue that neither subjectivism, frequentism, nor a best-system-style interpretation (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Inclusive Fitness as a Criterion for Improvement.Jonathan Birch - 2019 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 76 (C):101186.
    I distinguish two roles for a fitness concept in the context of explaining cumulative adaptive evolution: fitness as a predictor of gene frequency change, and fitness as a criterion for phenotypic improvement. Critics of inclusive fitness argue, correctly, that it is not an ideal fitness concept for the purpose of predicting gene-frequency change, since it relies on assumptions about the causal structure of social interaction that are unlikely to be exactly true in real populations, and that hold as approximations only (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Objective Probability Theory Theory.Ellery Eells - 2010 - In Ellery Eells & James H. Fetzer, The Place of Probability in Science: In Honor of Ellery Eells (1953-2006). Springer. pp. 3--44.
    I argue that to the extent to which philosophical theories of objective probability have offered theoretically adequate conceptions of objective probability , they have failed to satisfy a methodological standard -- roughly, a requirement to the effect that the conception offered be specified with the precision appropriate for a physical interpretation of an abstract formal calculus and be fully explicated in terms of concepts, objects or phenomena understood independently of the idea of physical probability. The significance of this, and of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Chances and Propensities in Evo-Devo.Laura Nuño de la Rosa & Cristina Villegas - 2022 - British Journal for the Philosophy of Science 73 (2):509-533.
    While the notion of chance has been central in discussions over the probabilistic nature of natural selection and genetic drift, its role in the production of variants on which populational sampling takes place has received much less philosophical attention. This article discusses the concept of chance in evolution in the light of contemporary work in evo-devo. We distinguish different levels at which randomness and chance can be defined in this context, and argue that recent research on variability and evolvability demands (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Musing on Means: Fitness, Expectation, and the Principles of Natural Selection.Bengt Autzen - 2020 - British Journal for the Philosophy of Science 71 (1):373-389.
    How to measure fitness in the theory of natural selection? A fitness measure that has been proposed in both the biological and the philosophical literature is the expected relative reproductive success. The aim of this article is to examine the relationship between expected relative reproductive success and future actual evolutionary success. Doing so will not only clarify the use of expected relative reproductive success as a fitness measure but also shed light on the role of fitness in the theory of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations