Switch to: References

Citations of:

A Formalization of Set Theory Without Variables

American Mathematical Soc. (1988)

Add citations

You must login to add citations.
  1. Existential Import Today: New Metatheorems; Historical, Philosophical, and Pedagogical Misconceptions.John Corcoran & Hassan Masoud - 2015 - History and Philosophy of Logic 36 (1):39-61.
    Contrary to common misconceptions, today's logic is not devoid of existential import: the universalized conditional ∀ x [S→ P] implies its corresponding existentialized conjunction ∃ x [S & P], not in all cases, but in some. We characterize the proexamples by proving the Existential-Import Equivalence: The antecedent S of the universalized conditional alone determines whether the universalized conditional has existential import, i.e. whether it implies its corresponding existentialized conjunction.A predicate is an open formula having only x free. An existential-import predicate (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Dual tableau-based decision procedures for relational logics with restricted composition operator.Domenico Cantone, Marianna Nicolosi Asmundo & Ewa Orlowska - 2011 - Journal of Applied Non-Classical Logics 21 (2):177-200.
    We consider fragments of the relational logic RL(1) obtained by posing various constraints on the relational terms involving the operator of composition of relations. These fragments allow to express several non classical logics including modal and description logics. We show how relational dual tableaux can be employed to provide decision procedures for each of them.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Omitting types for algebraizable extensions of first order logic.Tarek Sayed Ahmed - 2005 - Journal of Applied Non-Classical Logics 15 (4):465-489.
    We prove an Omitting Types Theorem for certain algebraizable extensions of first order logic without equality studied in [SAI 00] and [SAY 04]. This is done by proving a representation theorem preserving given countable sets of infinite meets for certain reducts of ?- dimensional polyadic algebras, the so-called G polyadic algebras (Theorem 5). Here G is a special subsemigroup of (?, ? o) that specifies the signature of the algebras in question. We state and prove an independence result connecting our (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Logical Indefinites.Jack Woods - 2014 - Logique Et Analyse -- Special Issue Edited by Julien Murzi and Massimiliano Carrara 227: 277-307.
    I argue that we can and should extend Tarski's model-theoretic criterion of logicality to cover indefinite expressions like Hilbert's ɛ operator, Russell's indefinite description operator η, and abstraction operators like 'the number of'. I draw on this extension to discuss the logical status of both abstraction operators and abstraction principles.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)The Absence of Multiple Universes of Discourse in the 1936 Tarski Consequence-Definition Paper.John Corcoran & José Miguel Sagüillo - 2011 - History and Philosophy of Logic 32 (4):359-374.
    This paper discusses the history of the confusion and controversies over whether the definition of consequence presented in the 11-page 1936 Tarski consequence-definition paper is based on a monistic fixed-universe framework?like Begriffsschrift and Principia Mathematica. Monistic fixed-universe frameworks, common in pre-WWII logic, keep the range of the individual variables fixed as the class of all individuals. The contrary alternative is that the definition is predicated on a pluralistic multiple-universe framework?like the 1931 Gödel incompleteness paper. A pluralistic multiple-universe framework recognizes multiple (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • What are logical notions?Alfred Tarski - 1986 - History and Philosophy of Logic 7 (2):143-154.
    In this manuscript, published here for the first time, Tarski explores the concept of logical notion. He draws on Klein's Erlanger Programm to locate the logical notions of ordinary geometry as those invariant under all transformations of space. Generalizing, he explicates the concept of logical notion of an arbitrary discipline.
    Download  
     
    Export citation  
     
    Bookmark   231 citations  
  • Semantics and Truth.Jan Woleński - 2019 - Cham, Switzerland: Springer Verlag.
    The book provides a historical and systematic exposition of the semantic theory of truth formulated by Alfred Tarski in the 1930s. This theory became famous very soon and inspired logicians and philosophers. It has two different, but interconnected aspects: formal-logical and philosophical. The book deals with both, but it is intended mostly as a philosophical monograph. It explains Tarski’s motivation and presents discussions about his ideas as well as points out various applications of the semantic theory of truth to philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Extensionality and logicality.Gil Sagi - 2017 - Synthese (Suppl 5):1-25.
    Tarski characterized logical notions as invariant under permutations of the domain. The outcome, according to Tarski, is that our logic, which is commonly said to be a logic of extension rather than intension, is not even a logic of extension—it is a logic of cardinality. In this paper, I make this idea precise. We look at a scale inspired by Ruth Barcan Marcus of various levels of meaning: extensions, intensions and hyperintensions. On this scale, the lower the level of meaning, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)LOGIC TEACHING IN THE 21ST CENTURY.John Corcoran - 2016 - Quadripartita Ratio: Revista de Argumentación y Retórica 1 (1):1-34.
    We are much better equipped to let the facts reveal themselves to us instead of blinding ourselves to them or stubbornly trying to force them into preconceived molds. We no longer embarrass ourselves in front of our students, for example, by insisting that “Some Xs are Y” means the same as “Some X is Y”, and lamely adding “for purposes of logic” whenever there is pushback. Logic teaching in this century can exploit the new spirit of objectivity, humility, clarity, observationalism, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)LOGIC TEACHING IN THE 21ST CENTURY.John Corcoran - manuscript
    We are much better equipped to let the facts reveal themselves to us instead of blinding ourselves to them or stubbornly trying to force them into preconceived molds. We no longer embarrass ourselves in front of our students, for example, by insisting that “Some Xs are Y” means the same as “Some X is Y”, and lamely adding “for purposes of logic” whenever there is pushback. Logic teaching in this century can exploit the new spirit of objectivity, humility, clarity, observationalism, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Paraconsistent Quasi-Set Theory.Décio Krause - unknown
    Paraconsistent logics are logics that can be used to base inconsistent but non-trivial systems. In paraconsistent set theories, we can quan- tify over sets that in standard set theories, if consistent, would lead to contradictions, such as the Russell set, R = fx : x =2 xg. Quasi-set theories are mathematical systems built for dealing with collections of indiscernible elements. The basic motivation for the development of quasi-set theories came from quantum physics, where indiscernible entities need to be considered. Usually, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Representation and Invariance of Scientific Structures.Patrick Suppes - 2002 - CSLI Publications (distributed by Chicago University Press).
    An early, very preliminary edition of this book was circulated in 1962 under the title Set-theoretical Structures in Science. There are many reasons for maintaining that such structures play a role in the philosophy of science. Perhaps the best is that they provide the right setting for investigating problems of representation and invariance in any systematic part of science, past or present. Examples are easy to cite. Sophisticated analysis of the nature of representation in perception is to be found already (...)
    Download  
     
    Export citation  
     
    Bookmark   143 citations  
  • Some modal aspects of XPath.Balder ten Cate, Gaëlle Fontaine & Tadeusz Litak - 2010 - Journal of Applied Non-Classical Logics 20 (3):139-171.
    This paper provides several examples of how modal logic can be used in studying the XML document navigation language XPath. More specifically, we derive complete axiomatizations, computational complexity and expressive power results for XPath fragments from known results for corresponding logics. A secondary aim of the paper is to introduce XPath in a way that makes it accessible to an audience of modal logicians.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Modal Languages and Bounded Fragments of Predicate Logic.Hajnal Andréka, István Németi & Johan van Benthem - 1998 - Journal of Philosophical Logic 27 (3):217 - 274.
    What precisely are fragments of classical first-order logic showing “modal” behaviour? Perhaps the most influential answer is that of Gabbay 1981, which identifies them with so-called “finite-variable fragments”, using only some fixed finite number of variables (free or bound). This view-point has been endorsed by many authors (cf. van Benthem 1991). We will investigate these fragments, and find that, illuminating and interesting though they are, they lack the required nice behaviour in our sense. (Several new negative results support this claim.) (...)
    Download  
     
    Export citation  
     
    Bookmark   99 citations  
  • Weak representations of relation algebras and relational bases.Robin Hirsch, Ian Hodkinson & Roger D. Maddux - 2011 - Journal of Symbolic Logic 76 (3):870 - 882.
    It is known that for all finite n ≥ 5, there are relation algebras with n-dimensional relational bases but no weak representations. We prove that conversely, there are finite weakly representable relation algebras with no n-dimensional relational bases. In symbols: neither of the classes RA n and wRRA contains the other.
    Download  
     
    Export citation  
     
    Bookmark  
  • The problem of logical constants.Mario Gómez-Torrente - 2002 - Bulletin of Symbolic Logic 8 (1):1-37.
    There have been several different and even opposed conceptions of the problem of logical constants, i.e. of the requirements that a good theory of logical constants ought to satisfy. This paper is in the first place a survey of these conceptions and a critique of the theories they have given rise to. A second aim of the paper is to sketch some ideas about what a good theory would look like. A third aim is to draw from these ideas and (...)
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Tarski’s Influence on Computer Science.Solomon Feferman - 2018 - In Urszula Wybraniec-Skardowska & Ángel Garrido (eds.), The Lvov-Warsaw School. Past and Present. Cham, Switzerland: Springer- Birkhauser,. pp. 391-404.
    Alfred Tarski’s influence on computer science was indirect but significant in a number of directions and was in certain respects fundamental. Here surveyed is Tarski’s work on the decision procedure for algebra and geometry, the method of elimination of quantifiers, the semantics of formal languages, model-theoretic preservation theorems, and algebraic logic; various connections of each with computer science are taken up.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Interpretations of Arithmetic and Set Theory.Richard Kaye & Tin Lok Wong - 2007 - Notre Dame Journal of Formal Logic 48 (4):497-510.
    This paper starts by investigating Ackermann's interpretation of finite set theory in the natural numbers. We give a formal version of this interpretation from Peano arithmetic (PA) to Zermelo-Fraenkel set theory with the infinity axiom negated (ZF−inf) and provide an inverse interpretation going the other way. In particular, we emphasize the precise axiomatization of our set theory that is required and point out the necessity of the axiom of transitive containment or (equivalently) the axiom scheme of ∈-induction. This clarifies the (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Finite mathematics.Shaughan Lavine - 1995 - Synthese 103 (3):389 - 420.
    A system of finite mathematics is proposed that has all of the power of classical mathematics. I believe that finite mathematics is not committed to any form of infinity, actual or potential, either within its theories or in the metalanguage employed to specify them. I show in detail that its commitments to the infinite are no stronger than those of primitive recursive arithmetic. The finite mathematics of sets is comprehensible and usable on its own terms, without appeal to any form (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Taming logic.Maarten Marx, Szabolcs Mikul & István Németi - 1995 - Journal of Logic, Language and Information 4 (3):207-226.
    In this paper, we introduce a general technology, calledtaming, for finding well-behaved versions of well-investigated logics. Further, we state completeness, decidability, definability and interpolation results for a multimodal logic, calledarrow logic, with additional operators such as thedifference operator, andgraded modalities. Finally, we give a completeness proof for a strong version of arrow logic.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Provability with finitely many variables.Robin Hirsch, Ian Hodkinson & Roger D. Maddux - 2002 - Bulletin of Symbolic Logic 8 (3):348-379.
    For every finite n ≥ 4 there is a logically valid sentence φ n with the following properties: φ n contains only 3 variables (each of which occurs many times); φ n contains exactly one nonlogical binary relation symbol (no function symbols, no constants, and no equality symbol): φ n has a proof in first-order logic with equality that contains exactly n variables, but no proof containing only n - 1 variables. This result was first proved using the machinery of (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)Squares in Fork Arrow Logic.Renata P. de Freitas, Jorge P. Viana, Mario R. F. Benevides, Sheila R. M. Veloso & Paulo A. S. Veloso - 2003 - Journal of Philosophical Logic 32 (4):343-355.
    In this paper we show that the class of fork squares has a complete orthodox axiomatization in fork arrow logic (FAL). This result may be seen as an orthodox counterpart of Venema's non-orthodox axiomatization for the class of squares in arrow logic. FAL is the modal logic of fork algebras (FAs) just as arrow logic is the modal logic of relation algebras (RAs). FAs extend RAs by a binary fork operator and are axiomatized by adding three equations to RAs equational (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On tarski’s assumptions.Jaakko Hintikka - 2005 - Synthese 142 (3):353-369.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An autobiography of polyadic algebras.Paul R. Halmos - 2000 - Logic Journal of the IGPL 8 (4):383-392.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On eight independent equational axiomatisations for fork algebras.Paulo As Veloso - 1998 - Bulletin of the Section of Logic 27 (3):117-129.
    Download  
     
    Export citation  
     
    Bookmark  
  • Addition and multiplication of sets.Laurence Kirby - 2007 - Mathematical Logic Quarterly 53 (1):52-65.
    Ordinal addition and multiplication can be extended in a natural way to all sets. I survey the structure of the sets under these operations. In particular, the natural partial ordering associated with addition of sets is shown to be a tree. This allows us to prove that any set has a unique representation as a sum of additively irreducible sets, and that the non-empty elements of any model of set theory can be partitioned into infinitely many submodels, each isomorphic to (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Complexity of equations valid in algebras of relations part I: Strong non-finitizability.Hajnal Andréka - 1997 - Annals of Pure and Applied Logic 89 (2):149-209.
    We study algebras whose elements are relations, and the operations are natural “manipulations” of relations. This area goes back to 140 years ago to works of De Morgan, Peirce, Schröder . Well known examples of algebras of relations are the varieties RCAn of cylindric algebras of n-ary relations, RPEAn of polyadic equality algebras of n-ary relations, and RRA of binary relations with composition. We prove that any axiomatization, say E, of RCAn has to be very complex in the following sense: (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Technical Modal Logic.Marcus Kracht - 2011 - Philosophy Compass 6 (5):350-359.
    Modal logic is concerned with the analysis of sentential operators in the widest sense. Originally invented to analyse the notion of necessity applications have been found in many areas of philosophy, logic, linguistics and computer science. This in turn has led to an increased interest in the technical development of modal logic.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Complexity of equational theory of relational algebras with standard projection elements.Szabolcs Mikulás, Ildikó Sain & András Simon - 2015 - Synthese 192 (7):2159-2182.
    The class $$\mathsf{TPA}$$ TPA of t rue p airing a lgebras is defined to be the class of relation algebras expanded with concrete set theoretical projection functions. The main results of the present paper is that neither the equational theory of $$\mathsf{TPA}$$ TPA nor the first order theory of $$\mathsf{TPA}$$ TPA are decidable. Moreover, we show that the set of all equations valid in $$\mathsf{TPA}$$ TPA is exactly on the $$\Pi ^1_1$$ Π 1 1 level. We consider the class $$\mathsf{TPA}^-$$ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Complexity of equational theory of relational algebras with projection elements.Szabolcs Mikulás, Ildikó Sain & Andras Simon - 1992 - Bulletin of the Section of Logic 21 (3):103-111.
    The class \ of t rue p airing a lgebras is defined to be the class of relation algebras expanded with concrete set theoretical projection functions. The main results of the present paper is that neither the equational theory of \ nor the first order theory of \ are decidable. Moreover, we show that the set of all equations valid in \ is exactly on the \ level. We consider the class \ of the relation algebra reducts of \ ’s, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Relevance logics and relation algebras.Katalin Bimbó, J. Michael Dunn & Roger D. Maddux - 2009 - Review of Symbolic Logic 2 (1):102-131.
    Relevance logics are known to be sound and complete for relational semantics with a ternary accessibility relation. This paper investigates the problem of adequacy with respect to special kinds of dynamic semantics (i.e., proper relation algebras and relevant families of relations). We prove several soundness results here. We also prove the completeness of a certain positive fragment of R as well as of the first-degree fragment of relevance logics. These results show that some core ideas are shared between relevance logics (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A proof system for contact relation algebras.Ivo Düntsch & Ewa Orłowska - 2000 - Journal of Philosophical Logic 29 (3):241-262.
    Contact relations have been studied in the context of qualitative geometry and physics since the early 1920s, and have recently received attention in qualitative spatial reasoning. In this paper, we present a sound and complete proof system in the style of Rasiowa and Sikorski (1963) for relation algebras generated by a contact relation.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Epistemology of quasi-sets.Adonai Sant'Anna - unknown
    I briefly discuss the epistemological role of quasi-set theory in mathematics and theoretical physics. Quasi-set theory is a first order theory, based on Zermelo-Fraenkel set theory with Urelemente. Nevertheless, quasi-set theory allows us to cope with certain collections of objects where the usual notion of identity is not applicable, in the sense that $x = x$ is not a formula, if $x$ is an arbitrary term. Basically, quasi-set theory offers us some sort of logical apparatus for questioning the need for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Guest Editor’s Introduction: JvH100. [REVIEW]Irving H. Anellis - 2012 - Logica Universalis 6 (3-4):249-267.
    Download  
     
    Export citation  
     
    Bookmark  
  • Undecidability of representability as binary relations.Robin Hirsch & Marcel Jackson - 2012 - Journal of Symbolic Logic 77 (4):1211-1244.
    In this article we establish the undecidability of representability and of finite representability as algebras of binary relations in a wide range of signatures. In particular, representability and finite representability are undecidable for Boolean monoids and lattice ordered monoids, while representability is undecidable for Jónsson's relation algebra. We also establish a number of undecidability results for representability as algebras of injective functions.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Foundations of mathematics in polymorphic type theory.M. Randall Holmes - 2001 - Topoi 20 (1):29-52.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the meaning of statements in psychophysics characterizing conditional indeterminacy of percepts.Luigi Burigana & Francesco Martino - 2013 - Philosophical Psychology 26 (2):234 - 262.
    (2013). On the meaning of statements in psychophysics characterizing conditional indeterminacy of percepts. Philosophical Psychology: Vol. 26, No. 2, pp. 234-262. doi: 10.1080/09515089.2012.663715.
    Download  
     
    Export citation  
     
    Bookmark  
  • Weakly higher order cylindric algebras and finite axiomatization of the representables.I. Németi & A. Simon - 2009 - Studia Logica 91 (1):53 - 62.
    We show that the variety of n -dimensional weakly higher order cylindric algebras, introduced in Németi [9], [8], is finitely axiomatizable when n > 2. Our result implies that in certain non-well-founded set theories the finitization problem of algebraic logic admits a positive solution; and it shows that this variety is a good candidate for being the cylindric algebra theoretic counterpart of Tarski’s quasi-projective relation algebras.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Lower level connections between representations of relation algebras.György Serény - 1986 - Bulletin of the Section of Logic 15 (3):123-125.
    The algebra of all binary relations on a given set is the most important example of a relation algebra . In this note we will examine the possible isomorphisms within some subclasses of a closely related class ; A is a relation set algebra with base U if its Boolean reduct is a field of sets with unit element 2 U, its universe A contains the identity relation on U and it is closed under the operations −1 and |, where (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Relevance logic and the calculus of relations.Roger D. Maddux - 2010 - Review of Symbolic Logic 3 (1):41-70.
    Sound and complete semantics for classical propositional logic can be obtained by interpreting sentences as sets. Replacing sets with commuting dense binary relations produces an interpretation that turns out to be sound but not complete for R. Adding transitivity yields sound and complete semantics for RM, because all normal Sugihara matrices are representable as algebras of binary relations.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Finite, integral, and finite-dimensional relation algebras: a brief history.Roger D. Maddux - 2004 - Annals of Pure and Applied Logic 127 (1-3):117-130.
    Relation algebras were invented by Tarski and his collaborators in the middle of the 20th century. The concept of integrality arose naturally early in the history of the subject, as did various constructions of finite integral relation algebras. Later the concept of finite-dimensionality was introduced for classifying nonrepresentable relation algebras. This concept is closely connected to the number of variables used in proofs in first-order logic. Some results on these topics are presented in chronological order.
    Download  
     
    Export citation  
     
    Bookmark