Switch to: References

Add citations

You must login to add citations.
  1. Computation Tree Logics and Temporal Logics with Reference Pointers.Valentin Goranko - 2000 - Journal of Applied Non-Classical Logics 10 (3-4):221-242.
    A complete axiomatic system CTL$_{rp}$ is introduced for a temporal logic for finitely branching $\omega^+$-trees in a temporal language extended with so called reference pointers. Syntactic and semantic interpretations are constructed for the branching time computation tree logic CTL* into CTL$_{rp}$. In particular, that yields a complete axiomatization for the translations of all valid CTL*-formulae. Thus, the temporal logic with reference pointers is brought forward as a simpler (with no path quantifiers), but in a way more expressive medium for reasoning (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Modal Logic for Other-World Agnostics: Neutrality and Halldén Incompleteness.Lloyd Humberstone - 2006 - Journal of Philosophical Logic 36 (1):1-32.
    The logic of 'elsewhere,' i.e., of a sentence operator interpretable as attaching to a formula to yield a formula true at a point in a Kripke model just in case the first formula is true at all other points in the model, has been applied in settings in which the points in question represent spatial positions, as well as in the case in which they represent moments of time. This logic is applied here to the alethic modal case, in which (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Elementary Canonical Formulae: A Survey on Syntactic, Algorithmic, and Modeltheoretic Aspects.W. Conradie, V. Goranko & D. Vakarelov - 2005 - In Renate Schmidt, Ian Pratt-Hartmann, Mark Reynolds & Heinrich Wansing (eds.), Advances in Modal Logic, Volume 5. Kings College London Publ.. pp. 17-51.
    In terms of validity in Kripke frames, a modal formula expresses a universal monadic second-order condition. Those modal formulae which are equivalent to first-order conditions are called elementary. Modal formulae which have a certain persistence property which implies their validity in all canonical frames of modal logics axiomatized with them, and therefore their completeness, are called canonical. This is a survey of a recent and ongoing study of the class of elementary and canonical modal formulae. We summarize main ideas and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Modal Logic and Universal Algebra I: Modal Axiomatizations of Structures.Valentin Goranko & Dimiter Vakarelov - 2000 - In Michael Zakharyaschev, Krister Segerberg, Maarten de Rijke & Heinrich Wansing (eds.), Advances in Modal Logic, Volume 2. CSLI Publications. pp. 265-292.
    We study the general problem of axiomatizing structures in the framework of modal logic and present a uniform method for complete axiomatization of the modal logics determined by a large family of classes of structures of any signature.
    Download  
     
    Export citation  
     
    Bookmark  
  • Hierarchies of Modal and Temporal Logics with Reference Pointers.Valentin Goranko - 1996 - Journal of Logic, Language and Information 5 (1):1-24.
    We introduce and study hierarchies of extensions of the propositional modal and temporal languages with pairs of new syntactic devices: point of reference-reference pointer which enable semantic references to be made within a formula. We propose three different but equivalent semantics for the extended languages, discuss and compare their expressiveness. The languages with reference pointers are shown to have great expressive power (especially when their frugal syntax is taken into account), perspicuous semantics, and simple deductive systems. For instance, Kamp's and (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • The Logic of Peirce Algebras.Maarten De Rijke - 1995 - Journal of Logic, Language and Information 4 (3):227-250.
    Peirce algebras combine sets, relations and various operations linking the two in a unifying setting. This paper offers a modal perspective on Peirce algebras. Using modal logic a characterization of the full Peirce algebras is given, as well as a finite axiomatization of their equational theory that uses so-called unorthodox derivation rules. In addition, the expressive power of Peirce algebras is analyzed through their connection with first-order logic, and the fragment of first-order logic corresponding to Peirce algebras is described in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Pure Extensions, Proof Rules, and Hybrid Axiomatics.Patrick Blackburn & Balder Ten Cate - 2006 - Studia Logica 84 (2):277-322.
    In this paper we argue that hybrid logic is the deductive setting most natural for Kripke semantics. We do so by investigating hybrid axiomatics for a variety of systems, ranging from the basic hybrid language to the strong Priorean language . We show that hybrid logic offers a genuinely first-order perspective on Kripke semantics: it is possible to define base logics which extend automatically to a wide variety of frame classes and to prove completeness using the Henkin method. In the (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Hybrid Logics with Sahlqvist Axioms.ten Cate Balder, Marx Maarten & Viana Petrúcio - 2005 - Logic Journal of the IGPL 13 (3):293-300.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • PDL with Intersection of Programs: A Complete Axiomatization.Philippe Balbiani & Dimiter Vakarelov - 2003 - Journal of Applied Non-Classical Logics 13 (3-4):231-276.
    One of the important extensions of PDL is PDL with intersection of programs. We devote this paper to its complete axiomatization.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Hyperboolean Algebras and Hyperboolean Modal Logic.Valentin Goranko & Dimiter Vakarelov - 1999 - Journal of Applied Non-Classical Logics 9 (2):345-368.
    Hyperboolean algebras are Boolean algebras with operators, constructed as algebras of complexes (or, power structures) of Boolean algebras. They provide an algebraic semantics for a modal logic (called here a {\em hyperboolean modal logic}) with a Kripke semantics accordingly based on frames in which the worlds are elements of Boolean algebras and the relations correspond to the Boolean operations. We introduce the hyperboolean modal logic, give a complete axiomatization of it, and show that it lacks the finite model property. The (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Temporal Logics with Reference Pointers and Computation Tree Logics.Valentin Goranko - 2000 - Journal of Applied Non-Classical Logics 10 (3):221-242.
    A complete axiomatic system CTL$_{rp}$ is introduced for a temporal logic for finitely branching $\omega^+$-trees in a temporal language extended with so called reference pointers. Syntactic and semantic interpretations are constructed for the branching time computation tree logic CTL$^{*}$ into CTL$_{rp}$. In particular, that yields a complete axiomatization for the translations of all valid CTL$^{*}$-formulae. Thus, the temporal logic with reference pointers is brought forward as a simpler (with no path quantifiers), but in a way more expressive medium for reasoning (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A System of Dynamic Modal Logic.Maarten de Rijke - 1998 - Journal of Philosophical Logic 27 (2):109-142.
    In many logics dealing with information one needs to make statements not only about cognitive states, but also about transitions between them. In this paper we analyze a dynamic modal logic that has been designed with this purpose in mind. On top of an abstract information ordering on states it has instructions to move forward or backward along this ordering, to states where a certain assertion holds or fails, while it also allows combinations of such instructions by means of operations (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Modal Logics for Parallelism, Orthogonality, and Affine Geometries.Philippe Balbiani & Valentin Goranko - 2002 - Journal of Applied Non-Classical Logics 12 (3-4):365-397.
    We introduce and study a variety of modal logics of parallelism, orthogonality, and affine geometries, for which we establish several completeness, decidability and complexity results and state a number of related open, and apparently difficult problems. We also demonstrate that lack of the finite model property of modal logics for sufficiently rich affine or projective geometries (incl. the real affine and projective planes) is a rather common phenomenon.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On Formalizing Causation Based on Constant Conjunction Theory.Hu Liu & Xuefeng Wen - 2013 - Review of Symbolic Logic 6 (1):160-181.
    Constant conjunction theory of causation had been the dominant theory in philosophy for a long time and regained attention recently. This paper gives a logical framework of causation based on the theory. The basic idea is that causal statements are empirical, and are derived from our past experience by observing constant conjunction between objects. The logic is defined on linear time structures. A causal statement is evaluated at time points, such that its value depends on what has been in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Characterization of Classes of Frames in Modal Language.Kazimierz Trzęsicki - 2012 - Studies in Logic, Grammar and Rhetoric 27 (40).
    Download  
     
    Export citation  
     
    Bookmark  
  • Dynamic Extensions of Arrow Logic.Philippe Balbiani & Dimiter Vakarelov - 2004 - Annals of Pure and Applied Logic 127 (1-3):1-15.
    This paper is devoted to the complete axiomatization of dynamic extensions of arrow logic based on a restriction of propositional dynamic logic with intersection. Our deductive systems contain an unorthodox inference rule: the inference rule of intersection. The proof of the completeness of our deductive systems uses the technique of the canonical model.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Notes on Logics of Metric Spaces.Oliver Kutz - 2007 - Studia Logica 85 (1):75-104.
    In [14], we studied the computational behaviour of various first-order and modal languages interpreted in metric or weaker distance spaces. [13] gave an axiomatisation of an expressive and decidable metric logic. The main result of this paper is in showing that the technique of representing metric spaces by means of Kripke frames can be extended to cover the modal (hybrid) language that is expressively complete over metric spaces for the (undecidable) two-variable fragment of first-order logic with binary pred-icates interpreting the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Some Characterization and Preservation Theorems in Modal Logic.Tin Perkov - 2012 - Annals of Pure and Applied Logic 163 (12):1928-1939.
    A class of Kripke models is modally definable if there is a set of modal formulas such that the class consists exactly of models on which every formula from that set is globally true. In this paper, a class is also considered definable if there is a set of formulas such that it consists exactly of models in which every formula from that set is satisfiable. The notion of modal definability is then generalized by combining these two. For thus obtained (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Elementary Canonical Formulae: Extending Sahlqvist’s Theorem.Valentin Goranko & Dimiter Vakarelov - 2006 - Annals of Pure and Applied Logic 141 (1):180-217.
    We generalize and extend the class of Sahlqvist formulae in arbitrary polyadic modal languages, to the class of so called inductive formulae. To introduce them we use a representation of modal polyadic languages in a combinatorial style and thus, in particular, develop what we believe to be a better syntactic approach to elementary canonical formulae altogether. By generalizing the method of minimal valuations à la Sahlqvist–van Benthem and the topological approach of Sambin and Vaccaro we prove that all inductive formulae (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Proof-Theoretic Functional Completeness for the Hybrid Logics of Everywhere and Elsewhere.Torben Braüner - 2005 - Studia Logica 81 (2):191-226.
    A hybrid logic is obtained by adding to an ordinary modal logic further expressive power in the form of a second sort of propositional symbols called nominals and by adding so-called satisfaction operators. In this paper we consider hybridized versions of S5 (“the logic of everywhere”) and the modal logic of inequality (“the logic of elsewhere”). We give natural deduction systems for the logics and we prove functional completeness results.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Logic of Peirce Algebras.Maarten Rijke - 1995 - Journal of Logic, Language and Information 4 (3):227-250.
    Peirce algebras combine sets, relations and various operations linking the two in a unifying setting. This paper offers a modal perspective on Peirce algebras. Using modal logic as a characterization of the full Peirce algebras is given, as well as a finite axiomatization of their equational theory that uses so-called unorthodox derivation rules. In addition, the expressive power of Peirce algebras is analyzed through their connection with first-order logic and the fragment of first-order logic corresponding to Peirce algebras is described (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations