Switch to: References

Add citations

You must login to add citations.
  1. Finite additivity, another lottery paradox and conditionalisation.Colin Howson - 2014 - Synthese 191 (5):1-24.
    In this paper I argue that de Finetti provided compelling reasons for rejecting countable additivity. It is ironical therefore that the main argument advanced by Bayesians against following his recommendation is based on the consistency criterion, coherence, he himself developed. I will show that this argument is mistaken. Nevertheless, there remain some counter-intuitive consequences of rejecting countable additivity, and one in particular has all the appearances of a full-blown paradox. I will end by arguing that in fact it is no (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • You've Come a Long Way, Bayesians.Jonathan Weisberg - 2015 - Journal of Philosophical Logic 44 (6):817-834.
    Forty years ago, Bayesian philosophers were just catching a new wave of technical innovation, ushering in an era of scoring rules, imprecise credences, and infinitesimal probabilities. Meanwhile, down the hall, Gettier’s 1963 paper [28] was shaping a literature with little obvious interest in the formal programs of Reichenbach, Hempel, and Carnap, or their successors like Jeffrey, Levi, Skyrms, van Fraassen, and Lewis. And how Bayesians might accommodate the discourses of full belief and knowledge was but a glimmer in the eye (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • A Note on Comparative Probability.Nick Haverkamp & Moritz Schulz - 2012 - Erkenntnis 76 (3):395-402.
    A possible event always seems to be more probable than an impossible event. Although this constraint, usually alluded to as regularity , is prima facie very attractive, it cannot hold for standard probabilities. Moreover, in a recent paper Timothy Williamson has challenged even the idea that regularity can be integrated into a comparative conception of probability by showing that the standard comparative axioms conflict with certain cases if regularity is assumed. In this note, we suggest that there is a natural (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The material theory of induction.John D. Norton - 2021 - Calgary, Alberta, Canada: University of Calgary Press.
    The inaugural title in the new, Open Access series BSPS Open, The Material Theory of Induction will initiate a new tradition in the analysis of inductive inference. The fundamental burden of a theory of inductive inference is to determine which are the good inductive inferences or relations of inductive support and why it is that they are so. The traditional approach is modeled on that taken in accounts of deductive inference. It seeks universally applicable schemas or rules or a single (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Non-Measurability, Imprecise Credences, and Imprecise Chances.Yoaav Isaacs, Alan Hájek & John Hawthorne - 2021 - Mind 131 (523):892-916.
    – We offer a new motivation for imprecise probabilities. We argue that there are propositions to which precise probability cannot be assigned, but to which imprecise probability can be assigned. In such cases the alternative to imprecise probability is not precise probability, but no probability at all. And an imprecise probability is substantially better than no probability at all. Our argument is based on the mathematical phenomenon of non-measurable sets. Non-measurable propositions cannot receive precise probabilities, but there is a natural (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Weintraub’s response to Williamson’s coin flip argument.Matthew W. Parker - 2021 - European Journal for Philosophy of Science 11 (3):1-21.
    A probability distribution is regular if it does not assign probability zero to any possible event. Williamson argued that we should not require probabilities to be regular, for if we do, certain “isomorphic” physical events must have different probabilities, which is implausible. His remarks suggest an assumption that chances are determined by intrinsic, qualitative circumstances. Weintraub responds that Williamson’s coin flip events differ in their inclusion relations to each other, or the inclusion relations between their times, and this can account (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Independence of Belief and Credence.Elizabeth Jackson - 2022 - Philosophical Issues 32 (1):9-31.
    Much of the literature on the relationship between belief and credence has focused on the reduction question: that is, whether either belief or credence reduces to the other. This debate, while important, only scratches the surface of the belief-credence connection. Even on the anti-reductive dualist view, belief and credence could still be very tightly connected. Here, I explore questions about the belief-credence connection that go beyond reduction. This paper is dedicated to what I call the independence question: just how independent (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Are non-accidental regularities a cosmic coincidence? Revisiting a central threat to Humean laws.Aldo Filomeno - 2019 - Synthese 198 (6):5205-5227.
    If the laws of nature are as the Humean believes, it is an unexplained cosmic coincidence that the actual Humean mosaic is as extremely regular as it is. This is a strong and well-known objection to the Humean account of laws. Yet, as reasonable as this objection may seem, it is nowadays sometimes dismissed. The reason: its unjustified implicit assignment of equiprobability to each possible Humean mosaic; that is, its assumption of the principle of indifference, which has been attacked on (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Infinite Lotteries, Spinners, Applicability of Hyperreals†.Emanuele Bottazzi & Mikhail G. Katz - 2021 - Philosophia Mathematica 29 (1):88-109.
    We analyze recent criticisms of the use of hyperreal probabilities as expressed by Pruss, Easwaran, Parker, and Williamson. We show that the alleged arbitrariness of hyperreal fields can be avoided by working in the Kanovei–Shelah model or in saturated models. We argue that some of the objections to hyperreal probabilities arise from hidden biases that favor Archimedean models. We discuss the advantage of the hyperreals over transferless fields with infinitesimals. In Paper II we analyze two underdetermination theorems by Pruss and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Infinitesimal Probabilities.Sylvia Wenmackers - 2019 - In Richard Pettigrew & Jonathan Weisberg (eds.), The Open Handbook of Formal Epistemology. PhilPapers Foundation. pp. 199-265.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Correction to John D. Norton “How to build an infinite lottery machine”.John D. Norton & Alexander R. Pruss - 2018 - European Journal for Philosophy of Science 8 (1):143-144.
    An infinite lottery machine is used as a foil for testing the reach of inductive inference, since inferences concerning it require novel extensions of probability. Its use is defensible if there is some sense in which the lottery is physically possible, even if exotic physics is needed. I argue that exotic physics is needed and describe several proposals that fail and at least one that succeeds well enough.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Regularity and infinitely tossed coins.Colin Howson - 2017 - European Journal for Philosophy of Science 7 (1):97-102.
    Timothy Williamson has claimed to prove that regularity must fail even in a nonstandard setting, with a counterexample based on tossing a fair coin infinitely many times. I argue that Williamson’s argument is mistaken, and that a corrected version shows that it is not regularity which fails in the non-standard setting but a fundamental property of shifts in Bernoulli processes.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Games, Beliefs and Credences.Brian Weatherson - 2014 - Philosophy and Phenomenological Research 92 (2):209-236.
    In previous work I’ve defended an interest-relative theory of belief. This paper continues the defence. It has four aims. -/- 1. To offer a new kind of reason for being unsatis ed with the simple Lockean reduction of belief to credence. 2. To defend the legitimacy of appealing to credences in a theory of belief. 3. To illustrate the importance of theoretical, as well as practical, interests in an interest-relative account of belief. 4. To revise my account to cover propositions (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • (1 other version)Infinitesimal Probabilities.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2016 - British Journal for the Philosophy of Science 69 (2):509-552.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general. _1_ Introduction _2_ The Limits of Classical Probability Theory _2.1_ Classical probability functions _2.2_ Limitations _2.3_ Infinitesimals to the rescue? _3_ NAP Theory _3.1_ First four axioms of NAP _3.2_ Continuity and conditional probability _3.3_ The final axiom of NAP (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • More trouble for regular probabilitites.Matthew W. Parker - 2012
    In standard probability theory, probability zero is not the same as impossibility. But many have suggested that only impossible events should have probability zero. This can be arranged if we allow infinitesimal probabilities, but infinitesimals do not solve all of the problems. We will see that regular probabilities are not invariant over rigid transformations, even for simple, bounded, countable, constructive, and disjoint sets. Hence, regular chances cannot be determined by space-time invariant physical laws, and regular credences cannot satisfy seemingly reasonable (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Infinite Lotteries, Perfectly Thin Darts and Infinitesimals.Alexander R. Pruss - 2012 - Thought: A Journal of Philosophy 1 (2):81-89.
    One of the problems that Bayesian regularity, the thesis that all contingent propositions should be given probabilities strictly between zero and one, faces is the possibility of random processes that randomly and uniformly choose a number between zero and one. According to classical probability theory, the probability that such a process picks a particular number in the range is zero, but of course any number in the range can indeed be picked. There is a solution to this particular problem on (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Regularity and Hyperreal Credences.Kenny Easwaran - 2014 - Philosophical Review 123 (1):1-41.
    Many philosophers have become worried about the use of standard real numbers for the probability function that represents an agent's credences. They point out that real numbers can't capture the distinction between certain extremely unlikely events and genuinely impossible ones—they are both represented by credence 0, which violates a principle known as “regularity.” Following Skyrms 1980 and Lewis 1980, they recommend that we should instead use a much richer set of numbers, called the “hyperreals.” This essay argues that this popular (...)
    Download  
     
    Export citation  
     
    Bookmark   84 citations  
  • Probabilist antirealism.Igor Douven, Leon Horsten & Jan-Willem Romeijn - 2010 - Pacific Philosophical Quarterly 91 (1):38-63.
    Until now, antirealists have offered sketches of a theory of truth, at best. In this paper, we present a probabilist account of antirealist truth in some formal detail, and we assess its ability to deal with the problems that are standardly taken to beset antirealism.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Underdetermination of infinitesimal probabilities.Alexander R. Pruss - 2018 - Synthese 198 (1):777-799.
    A number of philosophers have attempted to solve the problem of null-probability possible events in Bayesian epistemology by proposing that there are infinitesimal probabilities. Hájek and Easwaran have argued that because there is no way to specify a particular hyperreal extension of the real numbers, solutions to the regularity problem involving infinitesimals, or at least hyperreal infinitesimals, involve an unsatisfactory ineffability or arbitrariness. The arguments depend on the alleged impossibility of picking out a particular hyperreal extension of the real numbers (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Probability, Regularity, and Cardinality.Alexander R. Pruss - 2013 - Philosophy of Science 80 (2):231-240.
    Regularity is the thesis that all contingent propositions should be assigned probabilities strictly between zero and one. I will prove on cardinality grounds that if the domain is large enough, a regular probability assignment is impossible, even if we expand the range of values that probabilities can take, including, for instance, hyperreal values, and significantly weaken the axioms of probability.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Literal self-deception.Maiya Jordan - 2020 - Analysis 80 (2):248-256.
    It is widely assumed that a literal understanding of someone’s self-deception that p yields the following contradiction. Qua self-deceiver, she does not believe that p, yet – qua self-deceived – she does believe that p. I argue that this assumption is ill-founded. Literalism about self-deception – the view that self-deceivers literally self-deceive – is not committed to this contradiction. On the contrary, properly understood, literalism excludes it.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Consequentialism in infinite worlds.Adam Jonsson & Martin Peterson - 2020 - Analysis 80 (2):240-248.
    We show that in infinite worlds the following three conditions are incompatible: The spatiotemporal ordering of individuals is morally irrelevant. All else being equal, the act of bringing about a good outcome with a high probability is better than the act of bringing about the same outcome with a low probability. One act is better than another only if there is a nonzero probability that it brings about a better outcome. The impossibility of combining these conditions shows that it is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Repelling a Prussian charge with a solution to a paradox of Dubins.Colin Howson - 2016 - Synthese 195 (1).
    Pruss uses an example of Lester Dubins to argue against the claim that appealing to hyperreal-valued probabilities saves probabilistic regularity from the objection that in continuum outcome-spaces and with standard probability functions all save countably many possibilities must be assigned probability 0. Dubins’s example seems to show that merely finitely additive standard probability functions allow reasoning to a foregone conclusion, and Pruss argues that hyperreal-valued probability functions are vulnerable to the same charge. However, Pruss’s argument relies on the rule of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Better Way of Framing Williamson’s Coin-Tossing Argument, but It Still Does Not Work.Colin Howson - 2019 - Philosophy of Science 86 (2):366-374.
    Timothy Williamson claimed to prove with a coin-tossing example that hyperreal probabilities cannot save the principle of regularity. A premise of his argument is that two specified infinitary events must be assigned the same probability because, he claims, they are isomorphic. But as has been pointed out, they are not isomorphic. A way of framing Williamson’s argument that does not make it depend on the isomorphism claim is in terms of shifts in Bernoulli processes, the usual mathematical model of sequential (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fair Infinite Lotteries, Qualitative Probability, and Regularity.Nicholas DiBella - 2022 - Philosophy of Science 89 (4):824-844.
    A number of philosophers have thought that fair lotteries over countably infinite sets of outcomes are conceptually incoherent by virtue of violating countable additivity. In this article, I show that a qualitative analogue of this argument generalizes to an argument against the conceptual coherence of a much wider class of fair infinite lotteries—including continuous uniform distributions. I argue that this result suggests that fair lotteries over countably infinite sets of outcomes are no more conceptually problematic than continuous uniform distributions. Along (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations