Switch to: References

Add citations

You must login to add citations.
  1. Dedekind's Abstract Concepts: Models and Mappings.Wilfried Sieg & Dirk Schlimm - 2014 - Philosophia Mathematica (3):nku021.
    Dedekind's mathematical work is integral to the transformation of mathematics in the nineteenth century and crucial for the emergence of structuralist mathematics in the twentieth century. We investigate the essential components of what Emmy Noether called, his ‘axiomatic standpoint’: abstract concepts, models, and mappings.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Analytical symbols and geometrical figures in eighteenth-century calculus.Giovanni Ferraro - 2001 - Studies in History and Philosophy of Science Part A 32 (3):535-555.
    Leibnizian-Newtonian calculus was a theory that dealt with geometrical objects; the figure continued to play one of the fundamental roles it had played in Greek geometry: it susbstituted a part of reasoning. During the eighteenth century a process of de-geometrization of calculus took place, which consisted in the rejection of the use of diagrams and in considering calculus as an 'intellectual' system where deduction was merely linguistic and mediated. This was achieved by interpreting variables as universal quantities and introducing the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Open Texture and Mathematics.Stewart Shapiro & Craige Roberts - 2021 - Notre Dame Journal of Formal Logic 62 (1):173-191.
    The purpose of this article is to explore the extent to which mathematics is subject to open texture and the extent to which mathematics resists open texture. The resistance is tied to the importance of proof and, in particular, rigor, in mathematics.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematical consensus: a research program.Roy Wagner - 2022 - Axiomathes 32 (3):1185-1204.
    One of the distinguishing features of mathematics is the exceptional level of consensus among mathematicians. However, an analysis of what mathematicians agree on, how they achieve this agreement, and the relevant historical conditions is lacking. This paper is a programmatic intervention providing a preliminary analysis and outlining a research program in this direction.First, I review the process of ‘negotiation’ that yields agreement about the validity of proofs. This process most often does generate consensus, however, it may give rise to another (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Motive und Probleme der Arithmetisierung der Mathematik in der ersten Hälfte des 19. Jahrhunderts — Cauchys Analysis in der Sicht des Mathematikers Martin Ohm.Hans Niels Jahnke - 1987 - Archive for History of Exact Sciences 37 (2):101-182.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Structure of Analog Representation.Andrew Y. Lee, Joshua Myers & Gabriel Oak Rabin - 2023 - Noûs 57 (1):209-237.
    This paper develops a theory of analog representation. We first argue that the mark of the analog is to be found in the nature of a representational system’s interpretation function, rather than in its vehicles or contents alone. We then develop the rulebound structure theory of analog representation, according to which analog systems are those that use interpretive rules to map syntactic structural features onto semantic structural features. The theory involves three degree-theoretic measures that capture three independent ways in which (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Lagrange’s theory of analytical functions and his ideal of purity of method.Marco Panza & Giovanni Ferraro - 2012 - Archive for History of Exact Sciences 66 (2):95-197.
    We reconstruct essential features of Lagrange’s theory of analytical functions by exhibiting its structure and basic assumptions, as well as its main shortcomings. We explain Lagrange’s notions of function and algebraic quantity, and we concentrate on power-series expansions, on the algorithm for derivative functions, and the remainder theorem—especially on the role this theorem has in solving geometric and mechanical problems. We thus aim to provide a better understanding of Enlightenment mathematics and to show that the foundations of mathematics did not, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Representaciones de la Función Durante la Enseñanza.Gonzalo Espinoza Vásquez & Paula Verdugo-Hernández - 2022 - Human Review. International Humanities Review / Revista Internacional de Humanidades 11 (6):1-18.
    Este estudio aborda el conocimiento y el trabajo matemático del profesor durante la enseñanza de las representaciones de la función a través del uso en conjunto de dos modelos teóricos. Se analiza una sesión para el 1er año de enseñanza media (14-15 años) dada por un profesor de matemática con la categoría de experto. Los resultados dan cuenta de la relación entre el trabajo matemático que se propone en el aula y los conocimientos que permiten esta organización, aportando elementos a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The calculus as algebraic analysis: Some observations on mathematical analysis in the 18th century.Craig G. Fraser - 1989 - Archive for History of Exact Sciences 39 (4):317-335.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The first works of D'Alembert and Euler about the problem of vibrating strings from the perspective of their correspondence.Guillame Jouve - 2017 - Centaurus 59 (4):300-307.
    Download  
     
    Export citation  
     
    Bookmark  
  • Representations and the Foundations of Mathematics.Sam Sanders - 2022 - Notre Dame Journal of Formal Logic 63 (1):1-28.
    The representation of mathematical objects in terms of (more) basic ones is part and parcel of (the foundations of) mathematics. In the usual foundations of mathematics, namely, ZFC set theory, all mathematical objects are represented by sets, while ordinary, namely, non–set theoretic, mathematics is represented in the more parsimonious language of second-order arithmetic. This paper deals with the latter representation for the rather basic case of continuous functions on the reals and Baire space. We show that the logical strength of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The shaping of the riesz representation theorem: A chapter in the history of analysis.J. D. Gray - 1984 - Archive for History of Exact Sciences 31 (2):127-187.
    Download  
     
    Export citation  
     
    Bookmark  
  • The origin and early development of non-analytic infinitely differentiable functions.G. G. Bilodeau - 1982 - Archive for History of Exact Sciences 27 (2):115-135.
    Download  
     
    Export citation  
     
    Bookmark  
  • The concept of “character” in Dirichlet’s theorem on primes in an arithmetic progression.Jeremy Avigad & Rebecca Morris - 2014 - Archive for History of Exact Sciences 68 (3):265-326.
    In 1837, Dirichlet proved that there are infinitely many primes in any arithmetic progression in which the terms do not all share a common factor. We survey implicit and explicit uses ofDirichlet characters in presentations of Dirichlet’s proof in the nineteenth and early twentieth centuries, with an eye toward understanding some of the pragmatic pressures that shaped the evolution of modern mathematical method.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Die Geschichte der pathologischen Funktionen? Ein Beitrag zur Entstehung der mathematischen Methodologie.Klaus Volkert - 1987 - Archive for History of Exact Sciences 37 (3):193-232.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Frege and his groups.Tuomo Aho - 1998 - History and Philosophy of Logic 19 (3):137-151.
    Frege's docent's dissertation Rechnungsmethoden, die sich auf eine Erweiterung des Grössenbegriffes gründen(1874) contains indications of a bold attempt to extend arithmetic. According to it, arithmetic means the science of magnitude, and magnitude must be understood structurally without intuitive support. The main thing is insight into the formal structure of the operation of ?addition?. It turns out that a general ?magnitude domain? coincides with a (commutative) group. This is an interesting connection with simultaneous developments in abstract algebra. As his main application, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On mathematical error.David Sherry - 1997 - Studies in History and Philosophy of Science Part A 28 (3):393-416.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Medieval Arabic Algebra as an Artificial Language.Jeffrey A. Oaks - 2007 - Journal of Indian Philosophy 35 (5-6):543-575.
    Medieval Arabic algebra is a good example of an artificial language.Yet despite its abstract, formal structure, its utility was restricted to problem solving. Geometry was the branch of mathematics used for expressing theories. While algebra was an art concerned with finding specific unknown numbers, geometry dealtwith generalmagnitudes.Algebra did possess the generosity needed to raise it to a more theoretical level—in the ninth century Abū Kāmil reinterpreted the algebraic unknown “thing” to prove a general result. But mathematicians had no motive to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Leibnizian mathematical concept of function in 1673. A presentation within the context of its emergence. [REVIEW]Laura E. Herrera Castillo - 2013 - Cultura:127-144.
    Es indudable la importancia de la noción de función para la matemática y la lógica actuales y es sabido que es G. W. Leibniz quien utiliza por vez primera el término función en un sentido matemático, un término que, además, es introducido en el marco de su cálculo infinitesimal. Puesto que el pensador alemán es, junto con I. Newton, uno de los descubri­dores del cálculo, suele pensarse que también debemos a él el concepto de función. Sin embargo, poco se ha (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Deux problèmes en vue d’une épistémologie transitive des mathématiques.René Gurtart - 2015 - Revue de Synthèse 136 (1-2):237-279.
    Le mathématicien au travail sait faire un geste que l'on appelle la« pulsation mathématique», qui s'exprime en tennes de bougé créatif nécessaire dans les diagrammes de pensée et d'interprétation des écrits mathématiques. Dans cette perspective Je statut d'objet est définitivement en révision, sous condition du jeu des relations. Le but ici est de construire aujourd'hui cette pulsation à partir de ce que Bachelard proposait hier comme épistémologie, aussi bien de la mathématique que de la science dite physique mathématique. Les liens (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Gödel on Concepts.Gabriella Crocco - 2006 - History and Philosophy of Logic 27 (2):171-191.
    This article is an attempt to present Gödel's discussion on concepts, from 1944 to the late 1970s, in particular relation to the thought of Frege and Russell. The discussion takes its point of departure from Gödel's claim in notes on Bernay's review of ?Russell's mathematical logic?. It then retraces the historical background of the notion of intension which both Russell and Gödel use, and offers some grounds for claiming that Gödel consistently considered logic as a free-type theory of concepts, called (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The foundational aspects of Gauss’s work on the hypergeometric, factorial and digamma functions.Giovanni Ferraro - 2007 - Archive for History of Exact Sciences 61 (5):457-518.
    In his writings about hypergeometric functions Gauss succeeded in moving beyond the restricted domain of eighteenth-century functions by changing several basic notions of analysis. He rejected formal methodology and the traditional notions of functions, complex numbers, infinite numbers, integration, and the sum of a series. Indeed, he thought that analysis derived from a few, intuitively given notions by means of other well-defined concepts which were reducible to intuitive ones. Gauss considered functions to be relations between continuous variable quantities while he (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations