Syntactic Interpolation for Tense Logics and Bi-Intuitionistic Logic via Nested Sequents

In Maribel Fernandez & Anca Muscholl (eds.), 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). Dagstuhl, Germany: pp. 1-16 (2020)
  Copy   BIBTEX

Abstract

We provide a direct method for proving Craig interpolation for a range of modal and intuitionistic logics, including those containing a "converse" modality. We demonstrate this method for classical tense logic, its extensions with path axioms, and for bi-intuitionistic logic. These logics do not have straightforward formalisations in the traditional Gentzen-style sequent calculus, but have all been shown to have cut-free nested sequent calculi. The proof of the interpolation theorem uses these calculi and is purely syntactic, without resorting to embeddings, semantic arguments, or interpreted connectives external to the underlying logical language. A novel feature of our proof includes an orthogonality condition for defining duality between interpolants.

Author's Profile

Tim Lyon
Technische Universit├Ąt Dresden

Analytics

Added to PP
2020-02-03

Downloads
80 (#60,503)

6 months
12 (#59,762)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?