The paper studies a cluster of systems for fully disquotational truth based on the restriction of initial sequents. Unlike well-known alternative approaches, such systems display both a simple and intuitive model theory and remarkable proof-theoretic properties. We start by showing that, due to a strong form of invertibility of the truth rules, cut is eliminable in the systems via a standard strategy supplemented by a suitable measure of the number of applications of truth rules to formulas in derivations. Next, (...) we notice that cut remains eliminable when suitable arithmetical axioms are added to the system. Finally, we establish a direct link between cut-free derivability in infinitary formulations of the systems considered and fixed-point semantics. Noticeably, unlike what happens with other background logics, such links are established without imposing any restriction to the premisses of the truth rules. (shrink)
This paper employs the linear nested sequent framework to design a new cut-free calculus (LNIF) for intuitionistic fuzzy logic---the first-order Goedel logic characterized by linear relational frames with constant domains. Linear nested sequents---which are nested sequents restricted to linear structures---prove to be a well-suited proof-theoretic formalism for intuitionistic fuzzy logic. We show that the calculus LNIF possesses highly desirable proof-theoretic properties such as invertibility of all rules, admissibility of structural rules, and syntactic cut-elimination.
In this paper I introduce a sequent system for the propositional modal logic S5. Derivations of valid sequents in the system are shown to correspond to proofs in a novel natural deduction system of circuit proofs (reminiscient of proofnets in linear logic, or multiple-conclusion calculi for classical logic). -/- The sequent derivations and proofnets are both simple extensions of sequents and proofnets for classical propositional logic, in which the new machinery—to take account of the modal vocabulary—is directly motivated (...) in terms of the simple, universal Kripke semantics for S5. The sequent system is cut-free and the circuit proofs are normalising. (shrink)
We provide a direct method for proving Craig interpolation for a range of modal and intuitionistic logics, including those containing a "converse" modality. We demonstrate this method for classical tense logic, its extensions with path axioms, and for bi-intuitionistic logic. These logics do not have straightforward formalisations in the traditional Gentzen-style sequent calculus, but have all been shown to have cut-free nested sequent calculi. The proof of the interpolation theorem uses these calculi and is purely syntactic, without resorting to embeddings, (...) semantic arguments, or interpreted connectives external to the underlying logical language. A novel feature of our proof includes an orthogonality condition for defining duality between interpolants. (shrink)
The aim of this paper is to emphasize the fact that for all finitely-many-valued logics there is a completely systematic relation between sequent calculi and tableau systems. More importantly, we show that for both of these systems there are al- ways two dual proof sytems (not just only two ways to interpret the calculi). This phenomenon may easily escape one’s attention since in the classical (two-valued) case the two systems coincide. (In two-valued logic the assignment of a truth value and (...) the exclusion of the opposite truth value describe the same situation.). (shrink)
Complete deductive systems are constructed for the non-valid (refutable) formulae and sequents of some propositional modal logics. Thus, complete syntactic characterizations in the sense of Lukasiewicz are established for these logics and, in particular, purely syntactic decision procedures for them are obtained. The paper also contains some historical remarks and a general discussion on refutation systems.
In [5], Béziau provides a means by which Gentzen’s sequent calculus can be combined with the general semantic theory of bivaluations. In doing so, according to Béziau, it is possible to construe the abstract “core” of logics in general, where logical syntax and semantics are “two sides of the same coin”. The central suggestion there is that, by way of a modification of the notion of maximal consistency, it is possible to prove the soundness and completeness for any normal logic. (...) However, the reduction to bivaluation may be a side effect of the architecture of ordinary sequents, which is both overly restrictive, and entails certain expressive restrictions over the language. This paper provides an expansion of Béziau’s completeness results for logics, by showing that there is a natural extension of that line of thinking to n-sided sequent constructions. Through analogical techniques to Béziau’s construction, it is possible, in this setting, to construct abstract soundness and completeness results for n-valued logics. (shrink)
An important question for proponents of non-contractive approaches to paradox is why contraction fails. Zardini offers an answer, namely that paradoxical sentences exhibit a kind of instability. I elaborate this idea using revision theory, and I argue that while instability does motivate failures of contraction, it equally motivates failure of many principles that non-contractive theorists want to maintain.
The aim of this paper is to introduce and explain display calculi for a variety of logics. We provide a survey of key results concerning such calculi, though we focus mainly on the global cut elimination theorem. Propositional, first-order, and modal display calculi are considered and their properties detailed.
Paraconsistent logics are logical systems that reject the classical principle, usually dubbed Explosion, that a contradiction implies everything. However, the received view about paraconsistency focuses only the inferential version of Explosion, which is concerned with formulae, thereby overlooking other possible accounts. In this paper, we propose to focus, additionally, on a meta-inferential version of Explosion, i.e. which is concerned with inferences or sequents. In doing so, we will offer a new characterization of paraconsistency by means of which a logic (...) is paraconsistent if it invalidates either the inferential or the meta-inferential notion of Explosion. We show the non-triviality of this criterion by discussing a number of logics. On the one hand, logics which validate and invalidate both versions of Explosion, such as classical logic and Asenjo–Priest’s 3-valued logic LP. On the other hand, logics which validate one version of Explosion but not the other, such as the substructural logics TS and ST, introduced by Malinowski and Cobreros, Egré, Ripley and van Rooij, which are obtained via Malinowski’s and Frankowski’s q- and p-matrices, respectively. (shrink)
Benchmarking automated theorem proving (ATP) systems using standardized problem sets is a well-established method for measuring their performance. However, the availability of such libraries for non-classical logics is very limited. In this work we propose a library for benchmarking Girard's (propositional) intuitionistic linear logic. For a quick bootstrapping of the collection of problems, and for discussing the selection of relevant problems and understanding their meaning as linear logic theorems, we use translations of the collection of Kleene's intuitionistic theorems in the (...) traditional monograph "Introduction to Metamathematics". We analyze four different translations of intuitionistic logic into linear logic and compare their proofs using a linear logic based prover with focusing. In order to enhance the set of problems in our library, we apply the three provability-preserving translations to the propositional benchmarks in the ILTP Library. Finally, we generate a comprehensive set of reachability problems for Petri nets and encode such problems as linear logic sequents, thus enlarging our collection of problems. (shrink)
Supervaluationism is often described as the most popular semantic treatment of indeterminacy. There???s little consensus, however, about how to fill out the bare-bones idea to include a characterization of logical consequence. The paper explores one methodology for choosing between the logics: pick a logic that norms belief as classical consequence is standardly thought to do. The main focus of the paper considers a variant of standard supervaluational, on which we can characterize degrees of determinacy. It applies the methodology above to (...) focus on degree logic. This is developed first in a basic, single-premise case; and then extended to the multipremise case, and to allow degrees of consequence. The metatheoretic properties of degree logic are set out. On the positive side, the logic is supraclassical???all classical valid sequents are degree logic valid. Strikingly, metarules such as cut and conjunction introduction fail. (shrink)
In recent years, the e ffort to formalize erotetic inferences (i.e., inferences to and from questions) has become a central concern for those working in erotetic logic. However, few have sought to formulate a proof theory for these inferences. To fill this lacuna, we construct a calculus for (classes of) sequents that are sound and complete for two species of erotetic inferences studied by Inferential Erotetic Logic (IEL): erotetic evocation and regular erotetic implication. While an attempt has been made (...) to axiomatize the former in a sequent system, there is currently no proof theory for the latter. Moreover, the extant axiomatization of erotetic evocation fails to capture its defeasible character and provides no rules for introducing or eliminating question-forming operators. In contrast, our calculus encodes defeasibility conditions on sequents and provides rules governing the introduction and elimination of erotetic formulas. We demonstrate that an elimination theorem holds for a version of the cut rule that applies to both declarative and erotetic formulas and that the rules for the axiomatic account of question evocation in IEL are admissible in our system. (shrink)
What the world needs now is another theory of vagueness. Not because the old theories are useless. Quite the contrary, the old theories provide many of the materials we need to construct the truest theory of vagueness ever seen. The theory shall be similar in motivation to supervaluationism, but more akin to many-valued theories in conceptualisation. What I take from the many-valued theories is the idea that some sentences can be truer than others. But I say very different things to (...) the ordering over sentences this relation generates. I say it is not a linear ordering, so it cannot be represented by the real numbers. I also argue that since there is higher-order vagueness, any mapping between sentences and mathematical objects is bound to be inappropriate. This is no cause for regret; we can say all we want to say by using the comparative truer than without mapping it onto some mathematical objects. From supervaluationism I take the idea that we can keep classical logic without keeping the familiar bivalent semantics for classical logic. But my preservation of classical logic is more comprehensive than is normally permitted by supervaluationism, for I preserve classical inference rules as well as classical sequents. And I do this without relying on the concept of acceptable precisifications as an unexplained explainer. The world does not need another guide to varieties of theories of vagueness, especially since Timothy Williamson (1994) and Rosanna Keefe (2000) have already provided quite good guides. I assume throughout familiarity with popular theories of vagueness. (shrink)
The first learning game to be developed to help students to develop and hone skills in constructing proofs in both the propositional and first-order predicate calculi. It comprises an autotelic (self-motivating) learning approach to assist students in developing skills and strategies of proof in the propositional and predicate calculus. The text of VALIDITY consists of a general introduction that describes earlier studies made of autotelic learning games, paying particular attention to work done at the Law School of Yale University, called (...) the ALL Project (Accelerated Learning of Logic). Following the introduction, the game of VALIDITY is described, first with reference to the propositional calculus, and then in connection with the first-order predicate calculus with identity. Sections in the text are devoted to discussions of the various rules of derivation employed in both calculi. Three appendices follow the main text; these provide a catalogue of sequents and theorems that have been proved for the propositional calculus and for the predicate calculus, and include suggestions for the classroom use of VALIDITY in university-level courses in mathematical logic. (shrink)
We introduce an effective translation from proofs in the display calculus to proofs in the labelled calculus in the context of tense logics. We identify the labelled calculus proofs in the image of this translation as those built from labelled sequents whose underlying directed graph possesses certain properties. For the basic normal tense logic Kt, the image is shown to be the set of all proofs in the labelled calculus G3Kt.
This paper shows how to derive nested calculi from labelled calculi for propositional intuitionistic logic and first-order intuitionistic logic with constant domains, thus connecting the general results for labelled calculi with the more refined formalism of nested sequents. The extraction of nested calculi from labelled calculi obtains via considerations pertaining to the elimination of structural rules in labelled derivations. Each aspect of the extraction process is motivated and detailed, showing that each nested calculus inherits favorable proof-theoretic properties from its (...) associated labelled calculus. (shrink)
This work provides proof-search algorithms and automated counter-model extraction for a class of STIT logics. With this, we answer an open problem concerning syntactic decision procedures and cut-free calculi for STIT logics. A new class of cut-free complete labelled sequent calculi G3LdmL^m_n, for multi-agent STIT with at most n-many choices, is introduced. We refine the calculi G3LdmL^m_n through the use of propagation rules and demonstrate the admissibility of their structural rules, resulting in auxiliary calculi Ldm^m_nL. In the single-agent case, we (...) show that the refined calculi Ldm^m_nL derive theorems within a restricted class of (forestlike) sequents, allowing us to provide proof-search algorithms that decide single-agent STIT logics. We prove that the proof-search algorithms are correct and terminate. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.