Results for 'Proof theory'

995 found
Order:
  1.  96
    Proof Theory of Finite-Valued Logics.Richard Zach - 1993 - Dissertation, Technische Universität Wien
    The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  2. Stoic Sequent Logic and Proof Theory.Susanne Bobzien - 2019 - History and Philosophy of Logic 40 (3):234-265.
    This paper contends that Stoic logic (i.e. Stoic analysis) deserves more attention from contemporary logicians. It sets out how, compared with contemporary propositional calculi, Stoic analysis is closest to methods of backward proof search for Gentzen-inspired substructural sequent logics, as they have been developed in logic programming and structural proof theory, and produces its proof search calculus in tree form. It shows how multiple similarities to Gentzen sequent systems combine with intriguing dissimilarities that may enrich contemporary (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  3.  91
    Takeuti's Proof Theory in the Context of the Kyoto School.Andrew Arana - 2019 - Jahrbuch Für Philosophie Das Tetsugaku-Ronso 46:1-17.
    Gaisi Takeuti (1926–2017) is one of the most distinguished logicians in proof theory after Hilbert and Gentzen. He extensively extended Hilbert's program in the sense that he formulated Gentzen's sequent calculus, conjectured that cut-elimination holds for it (Takeuti's conjecture), and obtained several stunning results in the 1950–60s towards the solution of his conjecture. Though he has been known chiefly as a great mathematician, he wrote many papers in English and Japanese where he expressed his philosophical thoughts. In particular, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Questions About Proof Theory Vis-À-Vis Natural Language Semantics (2007).Anna Szabolcsi - manuscript
    Semantics plays a role in grammar in at least three guises. (A) Linguists seek to account for speakers‘ knowledge of what linguistic expressions mean. This goal is typically achieved by assigning a model theoretic interpretation2 in a compositional fashion. For example, No whale flies is true if and only if the intersection of the sets of whales and fliers is empty in the model. (B) Linguists seek to account for the ability of speakers to make various inferences based on semantic (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  5. Hypersequents and the Proof Theory of Intuitionistic Fuzzy Logic.Matthias Baaz & Richard Zach - 2000 - In Peter G. Clote & Helmut Schwichtenberg (eds.), Computer Science Logic. 14th International Workshop, CSL 2000. Berlin: Springer. pp. 187– 201.
    Takeuti and Titani have introduced and investigated a logic they called intuitionistic fuzzy logic. This logic is characterized as the first-order Gödel logic based on the truth value set [0,1]. The logic is known to be axiomatizable, but no deduction system amenable to proof-theoretic, and hence, computational treatment, has been known. Such a system is presented here, based on previous work on hypersequent calculi for propositional Gödel logics by Avron. It is shown that the system is sound and complete, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  6.  23
    Proof Theory and Semantics for a Theory of Definite Descriptions.Nils Kürbis - 2021 - In Anupam Das & Sara Negri (eds.), TABLEAUX 2021, LNAI 12842.
    This paper presents a sequent calculus and a dual domain semantics for a theory of definite descriptions in which these expressions are formalised in the context of complete sentences by a binary quantifier I. I forms a formula from two formulas. Ix[F, G] means ‘The F is G’. This approach has the advantage of incorporating scope distinctions directly into the notation. Cut elimination is proved for a system of classical positive free logic with I and it is shown to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7.  23
    Display to Labeled Proofs and Back Again for Tense Logics.Agata Ciabattoni, Tim Lyon, Revantha Ramanayake & Alwen Tiu - 2021 - ACM Transactions on Computational Logic 22 (3):1-31.
    We introduce translations between display calculus proofs and labeled calculus proofs in the context of tense logics. First, we show that every derivation in the display calculus for the minimal tense logic Kt extended with general path axioms can be effectively transformed into a derivation in the corresponding labeled calculus. Concerning the converse translation, we show that for Kt extended with path axioms, every derivation in the corresponding labeled calculus can be put into a special form that is translatable to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  8. On Proof-Theoretic Approaches to the Paradoxes: Problems of Undergeneration and Overgeneration in the Prawitz-Tennant Analysis.Seungrak Choi - 2019 - Dissertation, Korea University
    In this dissertation, we shall investigate whether Tennant's criterion for paradoxicality(TCP) can be a correct criterion for genuine paradoxes and whether the requirement of a normal derivation(RND) can be a proof-theoretic solution to the paradoxes. Tennant’s criterion has two types of counterexamples. The one is a case which raises the problem of overgeneration that TCP makes a paradoxical derivation non-paradoxical. The other is one which generates the problem of undergeneration that TCP renders a non-paradoxical derivation paradoxical. Chapter 2 deals (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Evidence, Proofs, and Derivations.Andrew Aberdein - 2019 - ZDM 51 (5):825-834.
    The traditional view of evidence in mathematics is that evidence is just proof and proof is just derivation. There are good reasons for thinking that this view should be rejected: it misrepresents both historical and current mathematical practice. Nonetheless, evidence, proof, and derivation are closely intertwined. This paper seeks to tease these concepts apart. It emphasizes the role of argumentation as a context shared by evidence, proofs, and derivations. The utility of argumentation theory, in general, and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  10. Discourse Grammars and the Structure of Mathematical Reasoning II: The Nature of a Correct Theory of Proof and Its Value.John Corcoran - 1971 - Journal of Structural Learning 3 (2):1-16.
    1971. Discourse Grammars and the Structure of Mathematical Reasoning II: The Nature of a Correct Theory of Proof and Its Value, Journal of Structural Learning 3, #2, 1–16. REPRINTED 1976. Structural Learning II Issues and Approaches, ed. J. Scandura, Gordon & Breach Science Publishers, New York, MR56#15263. -/- This is the second of a series of three articles dealing with application of linguistics and logic to the study of mathematical reasoning, especially in the setting of a concern for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Objectivity And Proof In A Classical Indian Theory Of Number.Jonardon Ganeri - 2001 - Synthese 129 (3):413-437.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. From Display to Labelled Proofs for Tense Logics.Agata Ciabattoni, Tim Lyon & Revantha Ramanayake - 2018 - In Anil Nerode & Sergei Artemov (eds.), Logical Foundations of Computer Science. Springer International Publishing. pp. 120 - 139.
    We introduce an effective translation from proofs in the display calculus to proofs in the labelled calculus in the context of tense logics. We identify the labelled calculus proofs in the image of this translation as those built from labelled sequents whose underlying directed graph possesses certain properties. For the basic normal tense logic Kt, the image is shown to be the set of all proofs in the labelled calculus G3Kt.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  13. Recent Work on the Proof Paradox.Lewis D. Ross - 2020 - Philosophy Compass 15 (6).
    Recent years have seen fresh impetus brought to debates about the proper role of statistical evidence in the law. Recent work largely centres on a set of puzzles known as the ‘proof paradox’. While these puzzles may initially seem academic, they have important ramifications for the law: raising key conceptual questions about legal proof, and practical questions about DNA evidence. This article introduces the proof paradox, why we should care about it, and new work attempting to resolve (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  14.  47
    From Hilbert Proofs to Consecutions and Back.Tore Fjetland Øgaard - 2021 - Australasian Journal of Logic 18 (2):51-72.
    Restall set forth a "consecution" calculus in his "An Introduction to Substructural Logics." This is a natural deduction type sequent calculus where the structural rules play an important role. This paper looks at different ways of extending Restall's calculus. It is shown that Restall's weak soundness and completeness result with regards to a Hilbert calculus can be extended to a strong one so as to encompass what Restall calls proofs from assumptions. It is also shown how to extend the calculus (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Automating Agential Reasoning: Proof-Calculi and Syntactic Decidability for STIT Logics.Tim Lyon & Kees van Berkel - 2019 - In M. Baldoni, M. Dastani, B. Liao, Y. Sakurai & R. Zalila Wenkstern (eds.), PRIMA 2019: Principles and Practice of Multi-Agent Systems. 93413 Cham, Germany: Springer. pp. 202-218.
    This work provides proof-search algorithms and automated counter-model extraction for a class of STIT logics. With this, we answer an open problem concerning syntactic decision procedures and cut-free calculi for STIT logics. A new class of cut-free complete labelled sequent calculi G3LdmL^m_n, for multi-agent STIT with at most n-many choices, is introduced. We refine the calculi G3LdmL^m_n through the use of propagation rules and demonstrate the admissibility of their structural rules, resulting in auxiliary calculi Ldm^m_nL. In the single-agent case, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  16. Legal proof and statistical conjunctions.Lewis D. Ross - 2020 - Philosophical Studies 178 (6):2021-2041.
    A question, long discussed by legal scholars, has recently provoked a considerable amount of philosophical attention: ‘Is it ever appropriate to base a legal verdict on statistical evidence alone?’ Many philosophers who have considered this question reject legal reliance on bare statistics, even when the odds of error are extremely low. This paper develops a puzzle for the dominant theories concerning why we should eschew bare statistics. Namely, there seem to be compelling scenarios in which there are multiple sources of (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  17. Truth, Proof and Gödelian Arguments: A Defence of Tarskian Truth in Mathematics.Markus Pantsar - 2009 - Dissertation, University of Helsinki
    One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be established (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  18. Short Proofs of Tautologies Using the Schema of Equivalence.Matthias Baaz & Richard Zach - 1994 - In Egon Börger, Yuri Gurevich & Karl Meinke (eds.), Computer Science Logic. 7th Workshop, CSL '93, Swansea. Selected Papers. Berlin: Springer. pp. 33-35.
    It is shown how the schema of equivalence can be used to obtain short proofs of tautologies A , where the depth of proofs is linear in the number of variables in A .
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  19. Slip-Proof Actions.Santiago Amaya - 2016 - In Roman Altshuler & Michael J. Sigrist (eds.), Time and the Philosophy of Action. Routledge. pp. 21-36.
    Most human actions are complex, but some of them are basic. Which are these? In this paper, I address this question by invoking slips, a common kind of mistake. The proposal is this: an action is basic if and only if it is not possible to slip in performing it. The argument discusses some well-established results from the psychology of language production in the context of a philosophical theory of action. In the end, the proposed criterion is applied to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  20. On the Alleged Simplicity of Impure Proof.Andrew Arana - 2017 - In Roman Kossak & Philip Ording (eds.), Simplicity: Ideals of Practice in Mathematics and the Arts. pp. 207-226.
    Roughly, a proof of a theorem, is “pure” if it draws only on what is “close” or “intrinsic” to that theorem. Mathematicians employ a variety of terms to identify pure proofs, saying that a pure proof is one that avoids what is “extrinsic,” “extraneous,” “distant,” “remote,” “alien,” or “foreign” to the problem or theorem under investigation. In the background of these attributions is the view that there is a distance measure (or a variety of such measures) between mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  21. Discourse Grammars and the Structure of Mathematical Reasoning III: Two Theories of Proof,.John Corcoran - 1971 - Journal of Structural Learning 3 (3):1-24.
    ABSTRACT This part of the series has a dual purpose. In the first place we will discuss two kinds of theories of proof. The first kind will be called a theory of linear proof. The second has been called a theory of suppositional proof. The term "natural deduction" has often and correctly been used to refer to the second kind of theory, but I shall not do so here because many of the theories so-called (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. Co-Constructive Logic for Proofs and Refutations.James Trafford - 2014 - Studia Humana 3 (4):22-40.
    This paper considers logics which are formally dual to intuitionistic logic in order to investigate a co-constructive logic for proofs and refutations. This is philosophically motivated by a set of problems regarding the nature of constructive truth, and its relation to falsity. It is well known both that intuitionism can not deal constructively with negative information, and that defining falsity by means of intuitionistic negation leads, under widely-held assumptions, to a justification of bivalence. For example, we do not want to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  23. Theories of Truth Based on Four-Valued Infectious Logics.Damian Szmuc, Bruno Da Re & Federico Pailos - 2020 - Logic Journal of the IGPL 28 (5):712-746.
    Infectious logics are systems that have a truth-value that is assigned to a compound formula whenever it is assigned to one of its components. This paper studies four-valued infectious logics as the basis of transparent theories of truth. This take is motivated as a way to treat different pathological sentences differently, namely, by allowing some of them to be truth-value gluts and some others to be truth-value gaps and as a way to treat the semantic pathology suffered by at least (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  24. The Reasonable and the Relevant: Legal Standards of Proof.Georgi Gardiner - 2019 - Philosophy and Public Affairs 47 (3):288-318.
    According to a common conception of legal proof, satisfying a legal burden requires establishing a claim to a numerical threshold. Beyond reasonable doubt, for example, is often glossed as 90% or 95% likelihood given the evidence. Preponderance of evidence is interpreted as meaning at least 50% likelihood given the evidence. In light of problems with the common conception, I propose a new ‘relevant alternatives’ framework for legal standards of proof. Relevant alternative accounts of knowledge state that a person (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  25. Paratheism: A Proof That God Neither Exists nor Does Not Exist.Steven James Bartlett - 2016 - Willamette University Faculty Research Website: Http://Www.Willamette.Edu/~Sbartlet/Documents/Bartlett_Paratheism_A%20Proof%20that%20God%20neither%2 0Exists%20nor%20Does%20Not%20Exist.Pdf.
    Theism and its cousins, atheism and agnosticism, are seldom taken to task for logical-epistemological incoherence. This paper provides a condensed proof that not only theism, but atheism and agnosticism as well, are all of them conceptually self-undermining, and for the same reason: All attempt to make use of the concept of “transcendent reality,” which here is shown not only to lack meaning, but to preclude the very possibility of meaning. In doing this, the incoherence of theism, atheism, and agnosticism (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  26. Prove It! The Burden of Proof Game in Science Vs. Pseudoscience Disputes.Massimo Pigliucci & Maarten Boudry - 2014 - Philosophia 42 (2):487-502.
    The concept of burden of proof is used in a wide range of discourses, from philosophy to law, science, skepticism, and even in everyday reasoning. This paper provides an analysis of the proper deployment of burden of proof, focusing in particular on skeptical discussions of pseudoscience and the paranormal, where burden of proof assignments are most poignant and relatively clear-cut. We argue that burden of proof is often misapplied or used as a mere rhetorical gambit, with (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  27. Semantic Epistemology Redux: Proof and Validity in Quantum Mechanics.Arnold Cusmariu - 2016 - Logos and Episteme 7 (3):287-303.
    Definitions I presented in a previous article as part of a semantic approach in epistemology assumed that the concept of derivability from standard logic held across all mathematical and scientific disciplines. The present article argues that this assumption is not true for quantum mechanics (QM) by showing that concepts of validity applicable to proofs in mathematics and in classical mechanics are inapplicable to proofs in QM. Because semantic epistemology must include this important theory, revision is necessary. The one I (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  28. A Simple Proof of Born’s Rule for Statistical Interpretation of Quantum Mechanics.Biswaranjan Dikshit - 2017 - Journal for Foundations and Applications of Physics 4 (1):24-30.
    The Born’s rule to interpret the square of wave function as the probability to get a specific value in measurement has been accepted as a postulate in foundations of quantum mechanics. Although there have been so many attempts at deriving this rule theoretically using different approaches such as frequency operator approach, many-world theory, Bayesian probability and envariance, literature shows that arguments in each of these methods are circular. In view of absence of a convincing theoretical proof, recently some (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Infinite Analysis, Lucky Proof, and Guaranteed Proof in Leibniz.Gonzalo Rodriguez-Pereyra & Paul Lodge - 2011 - Archiv für Geschichte der Philosophie 93 (2):222-236.
    According to one of Leibniz's theories of contingency a proposition is contingent if and only if it cannot be proved in a finite number of steps. It has been argued that this faces the Problem of Lucky Proof , namely that we could begin by analysing the concept ‘Peter’ by saying that ‘Peter is a denier of Christ and …’, thereby having proved the proposition ‘Peter denies Christ’ in a finite number of steps. It also faces a more general (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  30. A Theory of Presumption for Everyday Argumentation.David M. Godden & Douglas N. Walton - 2007 - Pragmatics and Cognition 15 (2):313-346.
    The paper considers contemporary models of presumption in terms of their ability to contribute to a working theory of presumption for argumentation. Beginning with the Whatelian model, we consider its contemporary developments and alternatives, as proposed by Sidgwick, Kauffeld, Cronkhite, Rescher, Walton, Freeman, Ullmann-Margalit, and Hansen. Based on these accounts, we present a picture of presumptions characterized by their nature, function, foundation and force. On our account, presumption is a modal status that is attached to a claim and has (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  31. The Theory of Judgment Aggregation: An Introductory Review.Christian List - 2012 - Synthese 187 (1):179-207.
    This paper provides an introductory review of the theory of judgment aggregation. It introduces the paradoxes of majority voting that originally motivated the field, explains several key results on the impossibility of propositionwise judgment aggregation, presents a pedagogical proof of one of those results, discusses escape routes from the impossibility and relates judgment aggregation to some other salient aggregation problems, such as preference aggregation, abstract aggregation and probability aggregation. The present illustrative rather than exhaustive review is intended to (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  32. Proofs Are Programs: 19th Century Logic and 21st Century Computing.Philip Wadler - manuscript
    As the 19th century drew to a close, logicians formalized an ideal notion of proof. They were driven by nothing other than an abiding interest in truth, and their proofs were as ethereal as the mind of God. Yet within decades these mathematical abstractions were realized by the hand of man, in the digital stored-program computer. How it came to be recognized that proofs and programs are the same thing is a story that spans a century, a chase with (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  33.  46
    Characterizing Generics Are Material Inference Tickets: A Proof-Theoretic Analysis.Preston Stovall - 2019 - Inquiry: An Interdisciplinary Journal of Philosophy:1-37.
    ABSTRACTAn adequate semantics for generic sentences must stake out positions across a range of contested territory in philosophy and linguistics. For this reason the study of generic sentences is a venue for investigating different frameworks for understanding human rationality as manifested in linguistic phenomena such as quantification, classification of individuals under kinds, defeasible reasoning, and intensionality. Despite the wide variety of semantic theories developed for generic sentences, to date these theories have been almost universally model-theoretic and representational. This essay outlines (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Axiomatic Theories of Partial Ground I: The Base Theory.Johannes Korbmacher - 2018 - Journal of Philosophical Logic 47 (2):161-191.
    This is part one of a two-part paper, in which we develop an axiomatic theory of the relation of partial ground. The main novelty of the paper is the of use of a binary ground predicate rather than an operator to formalize ground. This allows us to connect theories of partial ground with axiomatic theories of truth. In this part of the paper, we develop an axiomatization of the relation of partial ground over the truths of arithmetic and show (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  35. Virtue Theory of Mathematical Practices: An Introduction.Andrew Aberdein, Colin Jakob Rittberg & Fenner Stanley Tanswell - 2021 - Synthese 199 (3-4):10167-10180.
    Until recently, discussion of virtues in the philosophy of mathematics has been fleeting and fragmentary at best. But in the last few years this has begun to change. As virtue theory has grown ever more influential, not just in ethics where virtues may seem most at home, but particularly in epistemology and the philosophy of science, some philosophers have sought to push virtues out into unexpected areas, including mathematics and its philosophy. But there are some mathematicians already there, ready (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Validations of Proofs Considered as Texts: Can Undergraduates Tell Whether an Argument Proves a Theorem?Annie Selden - 2003 - Journal for Mathematics Education Research 34 (1):4-36.
    We report on an exploratory study of the way eight mid-level undergraduate mathematics majors read and reflected on four student-generated arguments purported to be proofs of a single theorem. The results suggest that mid-level undergraduates tend to focus on surface features of such arguments and that their ability to determine whether arguments are proofs is very limited -- perhaps more so than either they or their instructors recognize. We begin by discussing arguments (purported proofs) regarded as texts and validations of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  37.  11
    Purism: An Ontological Proof for The Impossibility of God.* Primus - 2020 - Secular Studies 2 (2):160-178.
    This article presents an ontological proof that God is impossible.I define an ‘impossibility’ as a condition which is inconceivable due to its a priori characteristics (e.g. a ‘square circle’). Accordingly, said conditions will not ever become conceivable, as they could in instances of a posteriori inconceivability (e.g. the notion that someone could touch a star without being burned). As the basis of this argument, I refer to an a priori observation (Primus, 2019) regarding our inability to imagine inconsistency (difference) (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38.  90
    Sketch of a Proof-Theoretic Semantics for Necessity.Nils Kürbis - 2020 - In Nicola Olivetti, Rineke Verbrugge & Sara Negri (eds.), Advances in Modal Logic 13. Booklet of Short Papers. Helsinki: pp. 37-43.
    This paper considers proof-theoretic semantics for necessity within Dummett's and Prawitz's framework. Inspired by a system of Pfenning's and Davies's, the language of intuitionist logic is extended by a higher order operator which captures a notion of validity. A notion of relative necessary is defined in terms of it, which expresses a necessary connection between the assumptions and the conclusion of a deduction.
    Download  
     
    Export citation  
     
    Bookmark  
  39. Evolutionary Psychology: The Burdens of Proof.Elisabeth A. Lloyd - 1999 - Biology and Philosophy 14 (2):211-233.
    I discuss two types of evidential problems with the most widely touted experiments in evolutionary psychology, those performed by Leda Cosmides and interpreted by Cosmides and John Tooby. First, and despite Cosmides and Tooby's claims to the contrary, these experiments don't fulfil the standards of evidence of evolutionary biology. Second Cosmides and Tooby claim to have performed a crucial experiment, and to have eliminated rival approaches. Though they claim that their results are consistent with their theory but contradictory to (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  40.  73
    The Changing Practices of Proof in Mathematics: Gilles Dowek: Computation, Proof, Machine. Cambridge: Cambridge University Press, 2015. Translation of Les Métamorphoses du Calcul, Paris: Le Pommier, 2007. Translation From the French by Pierre Guillot and Marion Roman, $124.00HB, $40.99PB.Andrew Arana - 2017 - Metascience 26 (1):131-135.
    Review of Dowek, Gilles, Computation, Proof, Machine, Cambridge University Press, Cambridge, 2015. Translation of Les Métamorphoses du calcul, Le Pommier, Paris, 2007. Translation from the French by Pierre Guillot and Marion Roman.
    Download  
     
    Export citation  
     
    Bookmark  
  41. Takeuti's well-ordering proofs revisited.Andrew Arana & Ryota Akiyoshi - 2021 - Mita Philosophy Society 3 (146):83-110.
    Gaisi Takeuti extended Gentzen's work to higher-order case in 1950's–1960's and proved the consistency of impredicative subsystems of analysis. He has been chiefly known as a successor of Hilbert's school, but we pointed out in the previous paper that Takeuti's aimed to investigate the relationships between "minds" by carrying out his proof-theoretic project rather than proving the "reliability" of such impredicative subsystems of analysis. Moreover, as briefly explained there, his philosophical ideas can be traced back to Nishida's philosophy in (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  42. Background Theories and Total Science.P. D. Magnus - 2005 - Philosophy of Science 72 (5):1064-1075.
    Background theories in science are used both to prove and to disprove that theory choice is underdetermined by data. The alleged proof appeals to the fact that experiments to decide between theories typically require auxiliary assumptions from other theories. If this generates a kind of underdetermination, it shows that standards of scientific inference are fallible and must be appropriately contextualized. The alleged disproof appeals to the possibility of suitable background theories to show that no theory choice can (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  43. Scientific Proof of the Natural Moral Law.Eric Brown - manuscript
    Introduction to the Scientific Proof of the Natural Moral Law This paper proves that Aquinas has a means of demonstrating and deriving both moral goodness and the natural moral law from human nature alone. Aquinas scientifically proves the existence of the natural moral law as the natural rule of human operations from human nature alone. The distinction between moral goodness and transcendental goodness is affirmed. This provides the intellectual tools to refute the G.E. Moore (Principles of Ethics) attack against (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Dialectical and Heuristic Arguments: Presumptions and Burden of Proof.Fabrizio Macagno - 2010 - In C. Tindale & C. Reed (eds.), Dialectics, Dialogue and Argumentation: An Examination of Douglas Walton's Theories of Reasoning and Argument. College Publications. pp. 45-57.
    Presumption is a complex concept in law, affecting the dialogue setting. However, it is not clear how presumptions work in everyday argumentation, in which the concept of “plausible argumentation” seems to encompass all kinds of inferences. By analyzing the legal notion of presumption, it appears that this type of reasoning combines argument schemes with reasoning from ignorance. Presumptive reasoning can be considered a particular form of reasoning, which needs positive or negative evidence to carry a probative weight on the conclusion. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  45.  80
    Axiomatic Theories of Partial Ground II: Partial Ground and Hierarchies of Typed Truth.Johannes Korbmacher - 2018 - Journal of Philosophical Logic 47 (2):193-226.
    This is part two of a two-part paper in which we develop an axiomatic theory of the relation of partial ground. The main novelty of the paper is the of use of a binary ground predicate rather than an operator to formalize ground. In this part of the paper, we extend the base theory of the first part of the paper with hierarchically typed truth-predicates and principles about the interaction of partial ground and truth. We show that our (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  46. Is Euclid's Proof of the Infinitude of Prime Numbers Tautological?Zeeshan Mahmud - manuscript
    Euclid's classic proof about the infinitude of prime numbers has been a standard model of reasoning in student textbooks and books of elementary number theory. It has withstood scrutiny for over 2000 years but we shall prove that despite the deceptive appearance of its analytical reasoning it is tautological in nature. We shall argue that the proof is more of an observation about the general property of a prime numbers than an expository style of natural deduction of (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  47. The Strength of Truth-Theories.Richard Heck - manuscript
    This paper attempts to address the question what logical strength theories of truth have by considering such questions as: If you take a theory T and add a theory of truth to it, how strong is the resulting theory, as compared to T? It turns out that, in a wide range of cases, we can get some nice answers to this question, but only if we work in a framework that is somewhat different from those usually employed (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  48.  64
    Translating Non Interpretable Theories.Alfredo Roque Freire - forthcoming - South America Journal of Logic.
    Interpretations are generally regarded as the formal representation of the concept of translation.We do not subscribe to this view. A translation method must indeed establish relative consistency or have some uniformity. These are requirements of a translation. Yet, one can both be more strict or more flexible than interpretations are. In this article, we will define a general scheme translation. It should incorporate interpretations but also be compatible with more flexible methods. By doing so, we want to account for methods (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  49.  72
    Why Can't Geometers Cut Themselves on the Acutely Angled Objects of Their Proofs? Aristotle on Shape as an Impure Power.Brad Berman - 2017 - Méthexis 29 (1):89-106.
    For Aristotle, the shape of a physical body is perceptible per se (DA II.6, 418a8-9). As I read his position, shape is thus a causal power, as a physical body can affect our sense organs simply in virtue of possessing it. But this invites a challenge. If shape is an intrinsically powerful property, and indeed an intrinsically perceptible one, then why are the objects of geometrical reasoning, as such, inert and imperceptible? I here address Aristotle’s answer to that problem, focusing (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  50. Algorithmic Structuring of Cut-Free Proofs.Matthias Baaz & Richard Zach - 1993 - In Egon Börger, Hans Kleine Büning, Gerhard Jäger, Simone Martini & Michael M. Richter (eds.), Computer Science Logic. CSL’92, San Miniato, Italy. Selected Papers. Berlin: Springer. pp. 29–42.
    The problem of algorithmic structuring of proofs in the sequent calculi LK and LKB ( LK where blocks of quantifiers can be introduced in one step) is investigated, where a distinction is made between linear proofs and proofs in tree form. In this framework, structuring coincides with the introduction of cuts into a proof. The algorithmic solvability of this problem can be reduced to the question of k-l-compressibility: "Given a proof of length k , and l ≤ k (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 995