Switch to: Citations

Add references

You must login to add references.
  1. Classification of Sign-language Using VGG16.Tanseem N. Abu-Jamie & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (6):36-46.
    Sign Language Recognition (SLR) aims to translate sign language into text or speech in order to improve communication between deaf-mute people and the general public. This task has a large social impact, but it is still difficult due to the complexity and wide range of hand actions. We present a novel 3D convolutional neural network (CNN) that extracts discriminative spatial-temporal features from photo datasets. This article is about classification of sign languages are not universal and are usually not mutually intelligible (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Classifications of Pineapple using Deep Learning.Amjad H. Alfarra, Lamis F. Samhan, Yasmin E. Aslem, Marah M. Almasawabe & Samy S. Abu-Naser - 2021 - International Journal of Academic Information Systems Research (IJAISR) 5 (12):37-41.
    A pineapple is a tropical plant with eatable leafy foods most monetarily critical plant in the family Bromeliaceous. The pineapple is native to South America, where it has been developed for a long time. The acquaintance of the pineapple with Europe in the seventeenth century made it a critical social symbol of extravagance. Since the 1820s, pineapple has been industrially filled in nurseries and numerous tropical manors. Further, it is the third most significant tropical natural product in world creation. In (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Classification of A few Fruits Using Deep Learning.Mohammed Alkahlout, Samy S. Abu-Naser, Azmi H. Alsaqqa & Tanseem N. Abu-Jamie - 2022 - International Journal of Academic Engineering Research (IJAER) 5 (12):56-63.
    Abstract: Fruits are a rich source of energy, minerals and vitamins. They also contain fiber. There are many fruits types such as: Apple and pears, Citrus, Stone fruit, Tropical and exotic, Berries, Melons, Tomatoes and avocado. Classification of fruits can be used in many applications, whether industrial or in agriculture or services, for example, it can help the cashier in the hyper mall to determine the price and type of fruit and also may help some people to determining whether a (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Papaya Maturity Classifications using Deep Convolutional Neural Networks.Marah M. Al-Masawabe, Lamis F. Samhan, Amjad H. AlFarra, Yasmeen E. Aslem & Samy S. Abu-Naser - 2021 - International Journal of Engineering and Information Systems (IJEAIS) 5 (12):60-67.
    Papaya is a tropical fruit with a green cover, yellow pulp, and a taste between mango and cantaloupe, having commercial importance because of its high nutritive and medicinal value. The process of sorting papaya fruit based on maturely is one of the processes that greatly determine the mature of papaya fruit that will be sold to consumers. The manual grading of papaya fruit based on human visual perception is time-consuming and destructive. The objective of this paper is to the status (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Cantaloupe Classifications using Deep Learning.Basel El-Habil & Samy S. Abu-Naser - 2021 - International Journal of Academic Engineering Research (IJAER) 5 (12):7-17.
    Abstract cantaloupe and honeydew melons are part of the muskmelon family, which originated in the Middle East. When picking either cantaloupe or honeydew melons to eat, you should choose a firm fruit that is heavy for its size, with no obvious signs of bruising. They can be stored at room temperature until you cut them, after which they should be kept in the refrigerator in an airtight container for up to five days. You should always wash and scrub the rind (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Effect of Oxygen Consumption of Thylakoid Membranes (Chloroplasts) From Spinach after Inhibition Using JNN.Hisham Ziad Belbeisi, Youssef Samir Al-Awadi, Muhammad Munir Abbas & Samy S. Abu-Naser - 2020 - International Journal of Academic Health and Medical Research (IJAHMR) 4 (11):1-7.
    Abstract: In this research, an Artificial Neural Network (ANN) model was developed and tested to predict effect of oxygen consumption of thylakoid membranes (chloroplasts) from spinach after inhibition. A number of factors were identified that may affect of oxygen consumption of thylakoid membranes from spinach. Factors such as curve, herbicide, dose, among others, as input variables for the ANN model. A model based on multi-layer concept topology was developed and trained using the data from some inhibition of photosynthesis in farms. (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Breast Cancer Diagnosis and Survival Prediction Using JNN.Mohammed Ziyad Abu Shawarib, Ahmed Essam Abdel Latif, Bashir Essam El-Din Al-Zatmah & Samy S. Abu-Naser - 2020 - International Journal of Engineering and Information Systems (IJEAIS) 4 (10):23-30.
    Abstract: Breast cancer is reported to be the most common cancer type among women worldwide and it is the second highest women fatality rate amongst all cancer types. Notwithstanding all the progresses made in prevention and early intervention, early prognosis and survival prediction rates are still not sufficient. In this paper, we propose an ANN model which outperforms all the previous supervised learning methods by reaching 99.57 in terms of accuracy in Wisconsin Breast Cancer dataset. Experimental results on Haberman’s Breast (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Artificial Neural Network for Predicting Car Performance Using JNN.Awni Ahmed Al-Mobayed, Youssef Mahmoud Al-Madhoun, Mohammed Nasser Al-Shuwaikh & Samy S. Abu-Naser - 2020 - International Journal of Engineering and Information Systems (IJEAIS) 4 (9):139-145.
    In this paper an Artificial Neural Network (ANN) model was used to help cars dealers recognize the many characteristics of cars, including manufacturers, their location and classification of cars according to several categories including: Buying, Maint, Doors, Persons, Lug_boot, Safety, and Overall. ANN was used in forecasting car acceptability. The results showed that ANN model was able to predict the car acceptability with 99.12 %. The factor of Safety has the most influence on car acceptability evaluation. Comparative study method is (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Potato Classification Using Deep Learning.Abeer A. Elsharif, Ibtesam M. Dheir, Alaa Soliman Abu Mettleq & Samy S. Abu-Naser - 2020 - International Journal of Academic Pedagogical Research (IJAPR) 3 (12):1-8.
    Abstract: Potatoes are edible tubers, available worldwide and all year long. They are relatively cheap to grow, rich in nutrients, and they can make a delicious treat. The humble potato has fallen in popularity in recent years, due to the interest in low-carb foods. However, the fiber, vitamins, minerals, and phytochemicals it provides can help ward off disease and benefit human health. They are an important staple food in many countries around the world. There are an estimated 200 varieties of (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Handwritten Signature Verification using Deep Learning. [REVIEW]Eman Alajrami, Belal A. M. Ashqar, Bassem S. Abu-Nasser, Ahmed J. Khalil, Musleh M. Musleh, Alaa M. Barhoom & Samy S. Abu-Naser - manuscript
    Every person has his/her own unique signature that is used mainly for the purposes of personal identification and verification of important documents or legal transactions. There are two kinds of signature verification: static and dynamic. Static(off-line) verification is the process of verifying an electronic or document signature after it has been made, while dynamic(on-line) verification takes place as a person creates his/her signature on a digital tablet or a similar device. Offline signature verification is not efficient and slow for a (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Energy Efficiency Prediction using Artificial Neural Network.Ahmed J. Khalil, Alaa M. Barhoom, Bassem S. Abu-Nasser, Musleh M. Musleh & Samy S. Abu-Naser - 2019 - International Journal of Academic Pedagogical Research (IJAPR) 3 (9):1-7.
    Buildings energy consumption is growing gradually and put away around 40% of total energy use. Predicting heating and cooling loads of a building in the initial phase of the design to find out optimal solutions amongst different designs is very important, as ell as in the operating phase after the building has been finished for efficient energy. In this study, an artificial neural network model was designed and developed for predicting heating and cooling loads of a building based on a (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Tic-Tac-Toe Learning Using Artificial Neural Networks.Mohaned Abu Dalffa, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2019 - International Journal of Engineering and Information Systems (IJEAIS) 3 (2):9-19.
    Throughout this research, imposing the training of an Artificial Neural Network (ANN) to play tic-tac-toe bored game, by training the ANN to play the tic-tac-toe logic using the set of mathematical combination of the sequences that could be played by the system and using both the Gradient Descent Algorithm explicitly and the Elimination theory rules implicitly. And so on the system should be able to produce imunate amalgamations to solve every state within the game course to make better of results (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Glass Classification Using Artificial Neural Network.Mohmmad Jamal El-Khatib, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2019 - International Journal of Academic Pedagogical Research (IJAPR) 3 (23):25-31.
    As a type of evidence glass can be very useful contact trace material in a wide range of offences including burglaries and robberies, hit-and-run accidents, murders, assaults, ram-raids, criminal damage and thefts of and from motor vehicles. All of that offer the potential for glass fragments to be transferred from anything made of glass which breaks, to whoever or whatever was responsible. Variation in manufacture of glass allows considerable discrimination even with tiny fragments. In this study, we worked glass classification (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Artificial Neural Network for Forecasting Car Mileage per Gallon in the City.Mohsen Afana, Jomana Ahmed, Bayan Harb, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2018 - International Journal of Advanced Science and Technology 124:51-59.
    In this paper an Artificial Neural Network (ANN) model was used to help cars dealers recognize the many characteristics of cars, including manufacturers, their location and classification of cars according to several categories including: Make, Model, Type, Origin, DriveTrain, MSRP, Invoice, EngineSize, Cylinders, Horsepower, MPG_Highway, Weight, Wheelbase, Length. ANN was used in prediction of the number of miles per gallon when the car is driven in the city(MPG_City). The results showed that ANN model was able to predict MPG_City with 97.50 (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Predicting Software Analysis Process Risks Using Linear Stepwise Discriminant Analysis: Statistical Methods.A. Elzamly, H. Burairah, S. S. Abu Naser & M. Doheir - unknown
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Predicting Student Performance Using Artificial Neural Network: in the Faculty of Engineering and Information Technology.S. Abu Naser, I. Zaqout, M. A. Ghosh, R. Atallah & E. Alajrami - unknown
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Classification of Software Risks with Discriminant Analysis Techniques in Software planning Development Process.A. Elzamly, B. Hussin, S. S. Abu Naser & M. Doheir - unknown
    Download  
     
    Export citation  
     
    Bookmark   65 citations