Citations of:
Add citations
You must login to add citations.
|
|
Sign Language Recognition (SLR) aims to translate sign language into text or speech in order to improve communication between deaf-mute people and the general public. This task has a large social impact, but it is still difficult due to the complexity and wide range of hand actions. We present a novel 3D convolutional neural network (CNN) that extracts discriminative spatial-temporal features from photo datasets. This article is about classification of sign languages are not universal and are usually not mutually intelligible (...) |
|
Abstract: Heart diseases are increasing daily at a rapid rate and it is alarming and vital to predict heart diseases early. The diagnosis of heart diseases is a challenging task i.e. it must be done accurately and proficiently. The aim of this study is to determine which patient is more likely to have heart disease based on a number of medical features. We organized a heart disease prediction model to identify whether the person is likely to be diagnosed with a (...) |
|
Abstract: Heart diseases are increasing daily at a rapid rate and it is alarming and vital to predict heart diseases early. The diagnosis of heart diseases is a challenging task i.e. it must be done accurately and proficiently. The aim of this study is to determine which patient is more likely to have heart disease based on a number of medical features. We organized a heart disease prediction model to identify whether the person is likely to be diagnosed with a (...) |
|
Deep learning may transform health care, but model development has largely been dependent on availability of advanced technical expertise. The aim of this study is to develop a deep learning model to predict the gender from retinal fundus images. The proposed model was based on the Xception pre-trained model. The proposed model was trained on 20,000 retinal fundus images from Kaggle depository. The dataset was preprocessed them split into three datasets (training, validation, Testing). After training and cross-validating the proposed model, (...) |
|
Papaya is a tropical fruit with a green cover, yellow pulp, and a taste between mango and cantaloupe, having commercial importance because of its high nutritive and medicinal value. The process of sorting papaya fruit based on maturely is one of the processes that greatly determine the mature of papaya fruit that will be sold to consumers. The manual grading of papaya fruit based on human visual perception is time-consuming and destructive. The objective of this paper is to the status (...) |
|
Abstract: Fruits are a rich source of energy, minerals and vitamins. They also contain fiber. There are many fruits types such as: Apple and pears, Citrus, Stone fruit, Tropical and exotic, Berries, Melons, Tomatoes and avocado. Classification of fruits can be used in many applications, whether industrial or in agriculture or services, for example, it can help the cashier in the hyper mall to determine the price and type of fruit and also may help some people to determining whether a (...) |
|
A pineapple is a tropical plant with eatable leafy foods most monetarily critical plant in the family Bromeliaceous. The pineapple is native to South America, where it has been developed for a long time. The acquaintance of the pineapple with Europe in the seventeenth century made it a critical social symbol of extravagance. Since the 1820s, pineapple has been industrially filled in nurseries and numerous tropical manors. Further, it is the third most significant tropical natural product in world creation. In (...) |
|
Abstract: Sarcasm is commonly used in news and detecting sarcasm in headline news is challenging for humans and thus for computers. The media regularly seem to engage sarcasm in their news headline to get the attention of people. However, people find it tough to detect the sarcasm in the headline news, hence receiving a mistaken idea about that specific news and additionally spreading it to their friends, colleagues, etc. Consequently, an intelligent system that is able to distinguish between can sarcasm (...) |
|
Abstract: Sarcasm is commonly used in news and detecting sarcasm in headline news is challenging for humans and thus for computers. The media regularly seem to engage sarcasm in their news headline to get the attention of people. However, people find it tough to detect the sarcasm in the headline news, hence receiving a mistaken idea about that specific news and additionally spreading it to their friends, colleagues, etc. Consequently, an intelligent system that is able to distinguish between can sarcasm (...) |
|
There are many eye diseases but the most two common retinal diseases are Age-Related Macular Degeneration (AMD), which the sharp, central vision and a leading cause of vision loss among people age 50 and older, there are two types of AMD are wet AMD and DRUSEN. Diabetic Macular Edema (DME), which is a complication of diabetes caused by fluid accumulation in the macula that can affect the fovea. If it is left untreated it may cause vision loss. Therefore, early detection (...) |
|
Automatic detection of diseases and anatomical landmarks in medical images by the use of computers is important and considered a challenging process that could help medical diagnosis and reduce the cost and time of investigational procedures and refine health care systems all over the world. Recently, gastrointestinal (GI) tract disease diagnosis through endoscopic image classification is an active research area in the biomedical field. Several GI tract disease classification methods based on image processing and machine learning techniques have been proposed (...) |
|
Brain-related diseases are among the most difficult diseases due to their sensitivity, the difficulty of performing operations, and their high costs. In contrast, the operation is not necessary to succeed, as the results of the operation may be unsuccessful. One of the most common diseases that affect the brain is Alzheimer’s disease, which affects adults, a disease that leads to memory loss and forgetting information in varying degrees. According to the condition of each patient. For these reasons, it is important (...) |
|
Artificial intelligence (AI) is an area of computer science that emphasizes the creation of intelligent machines or software that work and reacts like humans, some of the computer activities with artificial intelligence are designed to include speech, recognition, learning, planning and problem solving. Deep learning is a collection of algorithms used in machine learning, it is part of a broad family of methods used for machine learning that are based on learning representations of data. Deep learning is used as a (...) |
|
Artificial intelligence (AI), deep learning, machine learning and neural networks represent extremely exciting and powerful machine learning-based techniques used to solve many real-world problems. Artificial intelligence is the branch of computer sciences that emphasizes the development of intelligent machines, thinking and working like humans. For example, recognition, problem-solving, learning, visual perception, decision-making and planning. Deep learning is a subset of machine learning in artificial intelligence that has networks capable of learning unsupervised from data that is unstructured or unlabeled. Deep learning (...) |
|
It is crucial to actively detect the risks of transactions in a financial company to improve customer experience and minimize financial loss. In this study, we compare different machine learning algorithms to effectively and efficiently predict the legitimacy of financial transactions. The algorithms used in this study were: MLP Repressor, Random Forest Classifier, Complement NB, MLP Classifier, Gaussian NB, Bernoulli NB, LGBM Classifier, Ada Boost Classifier, K Neighbors Classifier, Logistic Regression, Bagging Classifier, Decision Tree Classifier and Deep Learning. The dataset (...) |
|
In computer science, Artificial Intelligence (AI), sometimes called machine intelligence, is intelligence demonstrated by machines, in contrast to the natural intelligence displayed by humans and other animals. Computer science defines AI research as the study of "intelligent agents": any device that perceives its environment and takes actions that maximize its chance of successfully achieving its goals. Deep Learning is a new field of research. One of the branches of Artificial Intelligence Science deals with the creation of theories and algorithms that (...) |
|
Artificial intelligence (AI) is an area of computer science that emphasizes the creation of intelligent machines or software that work and react like humans. Some of the activities computers with artificial intelligence are designed for include, Speech, recognition, Learning, Planning and Problem solving. Deep learning is a collection of algorithms used in machine learning, It is part of a broad family of methods used for machine learning that are based on learning representations of data. Deep learning is a technique used (...) |
|
Abstract: Alzheimer's disease (AD) is one of the most common types of dementia. Symptoms appear gradually and end with severe brain damage. People with Alzheimer's disease lose the abilities of knowledge, memory, language and learning. Recently, the classification and diagnosis of diseases using deep learning has emerged as an active topic covering a wide range of applications. This paper proposes examining abnormalities in brain structures and detecting cases of Alzheimer's disease especially in the early stages, using features derived from medical (...) |
|
Throughout this research, imposing the training of an Artificial Neural Network (ANN) to play tic-tac-toe bored game, by training the ANN to play the tic-tac-toe logic using the set of mathematical combination of the sequences that could be played by the system and using both the Gradient Descent Algorithm explicitly and the Elimination theory rules implicitly. And so on the system should be able to produce imunate amalgamations to solve every state within the game course to make better of results (...) |