Switch to: Citations

Add references

You must login to add references.
  1. Specification.Raymond Turner - 2011 - Minds and Machines 21 (2):135-152.
    The specification and implementation of computational artefacts occurs throughout the discipline of computer science. Consequently, unpacking its nature should constitute one of the core areas of the philosophy of computer science. This paper presents a conceptual analysis of the central role of specification in the discipline.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • On Computable Numbers, with an Application to the Entscheidungsproblem.Alan Turing - 1936 - Proceedings of the London Mathematical Society 42 (1):230-265.
    Download  
     
    Export citation  
     
    Bookmark   718 citations  
  • (1 other version)The philosophy of computer science.Raymond Turner - 2013 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The method of levels of abstraction.Luciano Floridi - 2008 - Minds and Machines 18 (3):303–329.
    The use of “levels of abstraction” in philosophical analysis (levelism) has recently come under attack. In this paper, I argue that a refined version of epistemological levelism should be retained as a fundamental method, called the method of levels of abstraction. After a brief introduction, in section “Some Definitions and Preliminary Examples” the nature and applicability of the epistemological method of levels of abstraction is clarified. In section “A Classic Application of the Method ofion”, the philosophical fruitfulness of the new (...)
    Download  
     
    Export citation  
     
    Bookmark   123 citations  
  • Abstraction in computer science.Timothy Colburn & Gary Shute - 2007 - Minds and Machines 17 (2):169-184.
    We characterize abstraction in computer science by first comparing the fundamental nature of computer science with that of its cousin mathematics. We consider their primary products, use of formalism, and abstraction objectives, and find that the two disciplines are sharply distinguished. Mathematics, being primarily concerned with developing inference structures, has information neglect as its abstraction objective. Computer science, being primarily concerned with developing interaction patterns, has information hiding as its abstraction objective. We show that abstraction through information hiding is a (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Computing mechanisms.Gualtiero Piccinini - 2007 - Philosophy of Science 74 (4):501-526.
    This paper offers an account of what it is for a physical system to be a computing mechanism—a system that performs computations. A computing mechanism is a mechanism whose function is to generate output strings from input strings and (possibly) internal states, in accordance with a general rule that applies to all relevant strings and depends on the input strings and (possibly) internal states for its application. This account is motivated by reasons endogenous to the philosophy of computing, namely, doing (...)
    Download  
     
    Export citation  
     
    Bookmark   97 citations  
  • Does a rock implement every finite-state automaton?David J. Chalmers - 1996 - Synthese 108 (3):309-33.
    Hilary Putnam has argued that computational functionalism cannot serve as a foundation for the study of the mind, as every ordinary open physical system implements every finite-state automaton. I argue that Putnam's argument fails, but that it points out the need for a better understanding of the bridge between the theory of computation and the theory of physical systems: the relation of implementation. It also raises questions about the class of automata that can serve as a basis for understanding the (...)
    Download  
     
    Export citation  
     
    Bookmark   148 citations  
  • Functional analysis.Robert E. Cummins - 1975 - Journal of Philosophy 72 (November):741-64.
    Download  
     
    Export citation  
     
    Bookmark   860 citations  
  • (1 other version)Computer Ethics.Deborah G. Johnson - 2003 - In Luciano Floridi (ed.), The Blackwell guide to the philosophy of computing and information. Blackwell. pp. 63–75.
    The prelims comprise: Introduction Metatheoretical and Methodological Issues Applied and Synthetic Ethics Traditional and Emerging Issues Conclusion Websites and Other Resources.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Implementation as Resemblance.André Curtis-Trudel - 2021 - Philosophy of Science 88 (5):1021-1032.
    This article advertises a new account of computational implementation. According to the resemblance account, implementation is a matter of resembling a computational architecture. The resemblance account departs from previous theories by denying that computational architectures are exhausted by their formal, mathematical features. Instead, they are taken to be permeated with causality, spatiotemporality, and other nonmathematical features. I argue that this approach comports well with computer scientific practice and offers a novel response to so-called triviality arguments.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Computational Intention.Raymond Turner - 2020 - Studies in Logic, Grammar and Rhetoric 63 (1):19-30.
    The core entities of computer science include formal languages, spec-ifications, models, programs, implementations, semantic theories, type inference systems, abstract and physical machines. While there are conceptual questions concerning their nature, and in particular ontological ones (Turner 2018), our main focus here will be on the relationships between them. These relationships have an extensional aspect that articulates the propositional connection between the two entities, and an intentional one that fixes the direction of governance. An analysis of these two aspects will drive (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Unbearable Shallow Understanding of Deep Learning.Alessio Plebe & Giorgio Grasso - 2019 - Minds and Machines 29 (4):515-553.
    This paper analyzes the rapid and unexpected rise of deep learning within Artificial Intelligence and its applications. It tackles the possible reasons for this remarkable success, providing candidate paths towards a satisfactory explanation of why it works so well, at least in some domains. A historical account is given for the ups and downs, which have characterized neural networks research and its evolution from “shallow” to “deep” learning architectures. A precise account of “success” is given, in order to sieve out (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Why There is no General Solution to the Problem of Software Verification.John Symons & Jack J. Horner - 2020 - Foundations of Science 25 (3):541-557.
    How can we be certain that software is reliable? Is there any method that can verify the correctness of software for all cases of interest? Computer scientists and software engineers have informally assumed that there is no fully general solution to the verification problem. In this paper, we survey approaches to the problem of software verification and offer a new proof for why there can be no general solution.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Grounds for Trust: Essential Epistemic Opacity and Computational Reliabilism.Juan M. Durán & Nico Formanek - 2018 - Minds and Machines 28 (4):645-666.
    Several philosophical issues in connection with computer simulations rely on the assumption that results of simulations are trustworthy. Examples of these include the debate on the experimental role of computer simulations :483–496, 2009; Morrison in Philos Stud 143:33–57, 2009), the nature of computer data Computer simulations and the changing face of scientific experimentation, Cambridge Scholars Publishing, Barcelona, 2013; Humphreys, in: Durán, Arnold Computer simulations and the changing face of scientific experimentation, Cambridge Scholars Publishing, Barcelona, 2013), and the explanatory power of (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Computer Simulations in Science and Engineering. Concept, Practices, Perspectives.Juan Manuel Durán - 2018 - Springer.
    This book addresses key conceptual issues relating to the modern scientific and engineering use of computer simulations. It analyses a broad set of questions, from the nature of computer simulations to their epistemological power, including the many scientific, social and ethics implications of using computer simulations. The book is written in an easily accessible narrative, one that weaves together philosophical questions and scientific technicalities. It will thus appeal equally to all academic scientists, engineers, and researchers in industry interested in questions (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • (2 other versions)The Construction of Social Reality.John Searle - 1995 - Philosophy 71 (276):313-315.
    Download  
     
    Export citation  
     
    Bookmark   509 citations  
  • Implementation is Semantic Interpretation.Willam J. Rapaport - 1999 - The Monist 82 (1):109-130.
    What is the computational notion of “implementation”? It is not individuation, instantiation, reduction, or supervenience. It is, I suggest, semantic interpretation.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Explaining Engineered Computing Systems’ Behaviour: the Role of Abstraction and Idealization.Nicola Angius & Guglielmo Tamburrini - 2017 - Philosophy and Technology 30 (2):239-258.
    This paper addresses the methodological problem of analysing what it is to explain observed behaviours of engineered computing systems, focusing on the crucial role that abstraction and idealization play in explanations of both correct and incorrect BECS. First, it is argued that an understanding of explanatory requests about observed miscomputations crucially involves reference to the rich background afforded by hierarchies of functional specifications. Second, many explanations concerning incorrect BECS are found to abstract away from descriptions of physical components and processes (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On malfunctioning software.Giuseppe Primiero, Nir Fresco & Luciano Floridi - 2015 - Synthese 192 (4):1199-1220.
    Artefacts do not always do what they are supposed to, due to a variety of reasons, including manufacturing problems, poor maintenance, and normal wear-and-tear. Since software is an artefact, it should be subject to malfunctioning in the same sense in which other artefacts can malfunction. Yet, whether software is on a par with other artefacts when it comes to malfunctioning crucially depends on the abstraction used in the analysis. We distinguish between “negative” and “positive” notions of malfunction. A negative malfunction, (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Exaptation–A missing term in the science of form.Stephen Jay Gould & Elisabeth S. Vrba - 1998 - In David L. Hull & Michael Ruse (eds.), The philosophy of biology. New York: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   290 citations  
  • Sanctioning Models: The Epistemology of Simulation.Eric Winsberg - 1999 - Science in Context 12 (2):275-292.
    The ArgumentIn its reconstruction of scientific practice, philosophy of science has traditionally placed scientific theories in a central role, and has reduced the problem of mediating between theories and the world to formal considerations. Many applications of scientific theories, however, involve complex mathematical models whose constitutive equations are analytically unsolvable. The study of these applications often consists in developing representations of the underlying physics on a computer, and using the techniques of computer simulation in order to learn about the behavior (...)
    Download  
     
    Export citation  
     
    Bookmark   116 citations  
  • Computer Simulations in Science.Eric Winsberg - forthcoming - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Miscomputation.Nir Fresco & Giuseppe Primiero - 2013 - Philosophy and Technology 26 (3):253-272.
    The phenomenon of digital computation is explained (often differently) in computer science, computer engineering and more broadly in cognitive science. Although the semantics and implications of malfunctions have received attention in the philosophy of biology and philosophy of technology, errors in computational systems remain of interest only to computer science. Miscomputation has not gotten the philosophical attention it deserves. Our paper fills this gap by offering a taxonomy of miscomputations. This taxonomy is underpinned by a conceptual analysis of the design (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • A Taxonomy of Errors for Information Systems.Giuseppe Primiero - 2014 - Minds and Machines 24 (3):249-273.
    We provide a full characterization of computational error states for information systems. The class of errors considered is general enough to include human rational processes, logical reasoning, scientific progress and data processing in some functional programming languages. The aim is to reach a full taxonomy of error states by analysing the recovery and processing of data. We conclude by presenting machine-readable checking and resolve algorithms.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Scientific Theories of Computational Systems in Model Checking.Nicola Angius & Guglielmo Tamburrini - 2011 - Minds and Machines 21 (2):323-336.
    Model checking, a prominent formal method used to predict and explain the behaviour of software and hardware systems, is examined on the basis of reflective work in the philosophy of science concerning the ontology of scientific theories and model-based reasoning. The empirical theories of computational systems that model checking techniques enable one to build are identified, in the light of the semantic conception of scientific theories, with families of models that are interconnected by simulation relations. And the mappings between these (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On artifacts and works of art.Risto Hilpinen - 1992 - Theoria 58 (1):58-82.
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Science in the age of computer simulation.Eric Winsberg - 2010 - Chicago: University of Chicago Press.
    Introduction -- Sanctioning models : theories and their scope -- Methodology for a virtual world -- A tale of two methods -- When theories shake hands -- Models of climate : values and uncertainties -- Reliability without truth -- Conclusion.
    Download  
     
    Export citation  
     
    Bookmark   166 citations  
  • Program verification: the very idea.James H. Fetzer - 1988 - Communications of the Acm 31 (9):1048--1063.
    The notion of program verification appears to trade upon an equivocation. Algorithms, as logical structures, are appropriate subjects for deductive verification. Programs, as causal models of those structures, are not. The success of program verification as a generally applicable and completely reliable method for guaranteeing program performance is not even a theoretical possibility.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • AI as an Epistemic Technology.Ramón Alvarado - 2023 - Science and Engineering Ethics 29 (5):1-30.
    In this paper I argue that Artificial Intelligence and the many data science methods associated with it, such as machine learning and large language models, are first and foremost epistemic technologies. In order to establish this claim, I first argue that epistemic technologies can be conceptually and practically distinguished from other technologies in virtue of what they are designed for, what they do and how they do it. I then proceed to show that unlike other kinds of technology (_including_ other (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The dual nature of technical artefacts.Peter Kroes & Anthonie Meijers - 2006 - Studies in History and Philosophy of Science Part A 37 (1):1-4.
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • Computational Artifacts: Towards a Philosophy of Computer Science.Raymond Turner - 2018 - Springer Berlin Heidelberg.
    The philosophy of computer science is concerned with issues that arise from reflection upon the nature and practice of the discipline of computer science. This book presents an approach to the subject that is centered upon the notion of computational artefact. It provides an analysis of the things of computer science as technical artefacts. Seeing them in this way enables the application of the analytical tools and concepts from the philosophy of technology to the technical artefacts of computer science. With (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • (2 other versions)The Construction of Social Reality. Anthony Freeman in conversation with John Searle.J. Searle & A. Freeman - 1995 - Journal of Consciousness Studies 2 (2):180-189.
    John Searle began to discuss his recently published book `The Construction of Social Reality' with Anthony Freeman, and they ended up talking about God. The book itself and part of their conversation are introduced and briefly reflected upon by Anthony Freeman. Many familiar social facts -- like money and marriage and monarchy -- are only facts by human agreement. They exist only because we believe them to exist. That is the thesis, at once startling yet obvious, that philosopher John Searle (...)
    Download  
     
    Export citation  
     
    Bookmark   920 citations  
  • Model-based abductive reasoning in automated software testing.N. Angius - 2013 - Logic Journal of the IGPL 21 (6):931-942.
    Automated Software Testing (AST) using Model Checking is in this article epistemologically analysed in order to argue in favour of a model-based reasoning paradigm in computer science. Preliminarily, it is shown how both deductive and inductive reasoning are insufficient to determine whether a given piece of software is correct with respect to specified behavioural properties. Models algorithmically checked in Model Checking to select executions to be observed in Software Testing are acknowledged as analogical models which establish isomorphic relations with the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Extending Ourselves: Computational Science, Empiricism, and Scientific Method.Paul Humphreys - 2004 - New York, US: Oxford University Press.
    Computational methods such as computer simulations, Monte Carlo methods, and agent-based modeling have become the dominant techniques in many areas of science. Extending Ourselves contains the first systematic philosophical account of these new methods, and how they require a different approach to scientific method. Paul Humphreys draws a parallel between the ways in which such computational methods have enhanced our abilities to mathematically model the world, and the more familiar ways in which scientific instruments have expanded our access to the (...)
    Download  
     
    Export citation  
     
    Bookmark   281 citations  
  • Why There is no General Solution to the Problem of Software Verification.John Symons & Jack K. Horner - 2020 - Foundations of Science 25 (3):541-557.
    How can we be certain that software is reliable? Is there any method that can verify the correctness of software for all cases of interest? Computer scientists and software engineers have informally assumed that there is no fully general solution to the verification problem. In this paper, we survey approaches to the problem of software verification and offer a new proof for why there can be no general solution.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Understanding Error Rates in Software Engineering: Conceptual, Empirical, and Experimental Approaches.Jack K. Horner & John Symons - 2019 - Philosophy and Technology 32 (2):363-378.
    Software-intensive systems are ubiquitous in the industrialized world. The reliability of software has implications for how we understand scientific knowledge produced using software-intensive systems and for our understanding of the ethical and political status of technology. The reliability of a software system is largely determined by the distribution of errors and by the consequences of those errors in the usage of that system. We select a taxonomy of software error types from the literature on empirically observed software errors and compare (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Computer Simulations as Scientific Instruments.Ramón Alvarado - 2022 - Foundations of Science 27 (3):1183-1205.
    Computer simulations have conventionally been understood to be either extensions of formal methods such as mathematical models or as special cases of empirical practices such as experiments. Here, I argue that computer simulations are best understood as instruments. Understanding them as such can better elucidate their actual role as well as their potential epistemic standing in relation to science and other scientific methods, practices and devices.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • What Functions Explain: Functional Explanation and Self-Reproducing Systems.Peter McLaughlin - 2000 - New York, NY: Cambridge University Press.
    This 2001 book offers an examination of functional explanation as it is used in biology and the social sciences, and focuses on the kinds of philosophical presuppositions that such explanations carry with them. It tackles such questions as: why are some things explained functionally while others are not? What do the functional explanations tell us about how these objects are conceptualized? What do we commit ourselves to when we give and take functional explanations in the life sciences and the social (...)
    Download  
     
    Export citation  
     
    Bookmark   110 citations  
  • On the Foundations of Computing.Giuseppe Primiero - 2019 - Oxford University Press.
    Computing, today more than ever before, is a multi-faceted discipline which collates several methodologies, areas of interest, and approaches: mathematics, engineering, programming, and applications. Given its enormous impact on everyday life, it is essential that its debated origins are understood, and that its different foundations are explained. On the Foundations of Computing offers a comprehensive and critical overview of the birth and evolution of computing, and it presents some of the most important technical results and philosophical problems of the discipline, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Computable models.Raymond Turner - 2009 - London: Springer.
    Raymond Turner first provides a logical framework for specification and the design of specification languages, then uses this framework to introduce and study ...
    Download  
     
    Export citation  
     
    Bookmark   10 citations