Switch to: Citations

Add references

You must login to add references.
  1. Gap forcing: Generalizing the lévy-Solovay theorem.Joel David Hamkins - 1999 - Bulletin of Symbolic Logic 5 (2):264-272.
    The Lévy-Solovay Theorem [8] limits the kind of large cardinal embeddings that can exist in a small forcing extension. Here I announce a generalization of this theorem to a broad new class of forcing notions. One consequence is that many of the forcing iterations most commonly found in the large cardinal literature create no new weakly compact cardinals, measurable cardinals, strong cardinals, Woodin cardinals, strongly compact cardinals, supercompact cardinals, almost huge cardinals, huge cardinals, and so on.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Indestructibility and the level-by-level agreement between strong compactness and supercompactness.Arthur W. Apter & Joel David Hamkins - 2002 - Journal of Symbolic Logic 67 (2):820-840.
    Can a supercompact cardinal κ be Laver indestructible when there is a level-by-level agreement between strong compactness and supercompactness? In this article, we show that if there is a sufficiently large cardinal above κ, then no, it cannot. Conversely, if one weakens the requirement either by demanding less indestructibility, such as requiring only indestructibility by stratified posets, or less level-by-level agreement, such as requiring it only on measure one sets, then yes, it can.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • How large is the first strongly compact cardinal? or a study on identity crises.Menachem Magidor - 1976 - Annals of Mathematical Logic 10 (1):33-57.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • How large is the first strongly compact cardinal? or: A study on identity crises.Menachem Magidor - 1976 - Annals of Mathematical Logic 10 (1):33.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • On strong compactness and supercompactness.Telis K. Menas - 1975 - Annals of Mathematical Logic 7 (4):327.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Precipitous ideals.T. Jech, M. Magidor, W. Mitchell & K. Prikry - 1980 - Journal of Symbolic Logic 45 (1):1-8.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Small forcing makes any cardinal superdestructible.Joel David Hamkins - 1998 - Journal of Symbolic Logic 63 (1):51-58.
    Small forcing always ruins the indestructibility of an indestructible supercompact cardinal. In fact, after small forcing, any cardinal κ becomes superdestructible--any further <κ--closed forcing which adds a subset to κ will destroy the measurability, even the weak compactness, of κ. Nevertheless, after small forcing indestructible cardinals remain resurrectible, but never strongly resurrectible.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Identity crises and strong compactness : II. Strong cardinals.Arthur W. Apter & James Cummings - 2001 - Archive for Mathematical Logic 40 (1):25-38.
    . From a proper class of supercompact cardinals, we force and obtain a model in which the proper classes of strongly compact and strong cardinals precisely coincide. In this model, it is the case that no strongly compact cardinal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\kappa$\end{document} is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $2^\kappa = \kappa^+$\end{document} supercompact.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • On strong compactness and supercompactness.Telis K. Menas - 1975 - Annals of Mathematical Logic 7 (4):327-359.
    Download  
     
    Export citation  
     
    Bookmark   67 citations  
  • The lottery preparation.Joel David Hamkins - 2000 - Annals of Pure and Applied Logic 101 (2-3):103-146.
    The lottery preparation, a new general kind of Laver preparation, works uniformly with supercompact cardinals, strongly compact cardinals, strong cardinals, measurable cardinals, or what have you. And like the Laver preparation, the lottery preparation makes these cardinals indestructible by various kinds of further forcing. A supercompact cardinal κ, for example, becomes fully indestructible by <κ-directed closed forcing; a strong cardinal κ becomes indestructible by κ-strategically closed forcing; and a strongly compact cardinal κ becomes indestructible by, among others, the forcing to (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Destruction or preservation as you like it.Joel David Hamkins - 1998 - Annals of Pure and Applied Logic 91 (2-3):191-229.
    The Gap Forcing Theorem, a key contribution of this paper, implies essentially that after any reverse Easton iteration of closed forcing, such as the Laver preparation, every supercompactness measure on a supercompact cardinal extends a measure from the ground model. Thus, such forcing can create no new supercompact cardinals, and, if the GCH holds, neither can it increase the degree of supercompactness of any cardinal; in particular, it can create no new measurable cardinals. In a crescendo of what I call (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Some structural results concerning supercompact cardinals.Arthur W. Apter - 2001 - Journal of Symbolic Logic 66 (4):1919-1927.
    We show how the forcing of [5] can be iterated so as to get a model containing supercompact cardinals in which every measurable cardinal δ is δ + supercompact. We then apply this iteration to prove three additional theorems concerning the structure of the class of supercompact cardinals.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Patterns of compact cardinals.Arthur W. Apter - 1997 - Annals of Pure and Applied Logic 89 (2-3):101-115.
    We show relative to strong hypotheses that patterns of compact cardinals in the universe, where a compact cardinal is one which is either strongly compact or supercompact, can be virtually arbitrary. Specifically, we prove if V “ZFC + Ω is the least inaccessible limit of measurable limits of supercompact cardinals + ƒ : Ω → 2 is a function”, then there is a partial ordering P V so that for , There is a proper class of compact cardinals + If (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations