Switch to: Citations

Add references

You must login to add references.
  1. (4 other versions)Two Dogmas of Empiricism.Willard V. O. Quine - 1951 - Philosophical Review 60 (1):20–43.
    Modern empiricism has been conditioned in large part by two dogmas. One is a belief in some fundamental cleavage between truths which are analytic, or grounded in meanings independently of matters of fact, and truth which are synthetic, or grounded in fact. The other dogma is reductionism: the belief that each meaningful statement is equivalent to some logical construct upon terms which refer to immediate experience. Both dogmas, I shall argue, are ill founded. One effect of abandoning them is, as (...)
    Download  
     
    Export citation  
     
    Bookmark   1416 citations  
  • Discovering Complexity: Decomposition and Localization as Strategies in Scientific Research.William Bechtel & Robert C. Richardson - 2010 - Princeton.
    An analysis of two heuristic strategies for the development of mechanistic models, illustrated with historical examples from the life sciences. In Discovering Complexity, William Bechtel and Robert Richardson examine two heuristics that guided the development of mechanistic models in the life sciences: decomposition and localization. Drawing on historical cases from disciplines including cell biology, cognitive neuroscience, and genetics, they identify a number of "choice points" that life scientists confront in developing mechanistic explanations and show how different choices result in divergent (...)
    Download  
     
    Export citation  
     
    Bookmark   520 citations  
  • Nature's capacities and their measurement.Nancy Cartwright - 1989 - New York: Oxford University Press.
    Ever since David Hume, empiricists have barred powers and capacities from nature. In this book Cartwright argues that capacities are essential in our scientific world, and, contrary to empiricist orthodoxy, that they can meet sufficiently strict demands for testability. Econometrics is one discipline where probabilities are used to measure causal capacities, and the technology of modern physics provides several examples of testing capacities (such as lasers). Cartwright concludes by applying the lessons of the book about capacities and probabilities to the (...)
    Download  
     
    Export citation  
     
    Bookmark   632 citations  
  • (4 other versions)Two Dogmas of Empiricism.W. V. O. Quine - 2011 - In Robert B. Talisse & Scott F. Aikin (eds.), The Pragmatism Reader: From Peirce Through the Present. Princeton University Press. pp. 202-220.
    Download  
     
    Export citation  
     
    Bookmark   922 citations  
  • Bayesian Philosophy of Science.Jan Sprenger & Stephan Hartmann - 2019 - Oxford and New York: Oxford University Press.
    How should we reason in science? Jan Sprenger and Stephan Hartmann offer a refreshing take on classical topics in philosophy of science, using a single key concept to explain and to elucidate manifold aspects of scientific reasoning. They present good arguments and good inferences as being characterized by their effect on our rational degrees of belief. Refuting the view that there is no place for subjective attitudes in 'objective science', Sprenger and Hartmann explain the value of convincing evidence in terms (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Causality: Models, Reasoning and Inference.Judea Pearl - 2000 - Tijdschrift Voor Filosofie 64 (1):201-202.
    Download  
     
    Export citation  
     
    Bookmark   872 citations  
  • Probability Theory. The Logic of Science.Edwin T. Jaynes - 2002 - Cambridge University Press: Cambridge. Edited by G. Larry Bretthorst.
    Download  
     
    Export citation  
     
    Bookmark   224 citations  
  • The philosophy of evidence-based medicine.Jeremy H. Howick - 2011 - Chichester, West Sussex, UK: Wiley-Blackwell, BMJ Books.
    The philosophy of evidence-based medicine -- What is EBM? -- What is good evidence for a clinical decision? -- Ruling out plausible rival hypotheses and confounding factors : a method -- Resolving the paradox of effectiveness : when do observational studies offer the same degree of evidential support as randomized trials? -- Questioning double blinding as a universal methodological virtue of clinical trials : resolving the Philip's paradox -- Placebo controls : problematic and misleading baseline measures of effectiveness -- Questioning (...)
    Download  
     
    Export citation  
     
    Bookmark   132 citations  
  • The Aim and Structure of Physical Theory.Pierre Duhem & Philip P. Wiener - 1955 - Science and Society 19 (1):85-87.
    Download  
     
    Export citation  
     
    Bookmark   542 citations  
  • Philosophy of Experimental Biology.Marcel Weber - 2004 - Cambridge University Press.
    Philosophy of Experimental Biology explores some central philosophical issues concerning scientific research in experimental biology, including genetics, biochemistry, molecular biology, developmental biology, neurobiology, and microbiology. It seeks to make sense of the explanatory strategies, concepts, ways of reasoning, approaches to discovery and problem solving, tools, models and experimental systems deployed by scientific life science researchers and also integrates developments in historical scholarship, in particular the New Experimentalism. It concludes that historical explanations of scientific change that are based on local laboratory (...)
    Download  
     
    Export citation  
     
    Bookmark   165 citations  
  • Saving the phenomena.James Bogen & James Woodward - 1988 - Philosophical Review 97 (3):303-352.
    Download  
     
    Export citation  
     
    Bookmark   391 citations  
  • Experimental and quasi-experimental designs for generalized causal inference.William R. Shadish - 2001 - Boston: Houghton Mifflin. Edited by Thomas D. Cook & Donald Thomas Campbell.
    Sections include: experiments and generalised causal inference; statistical conclusion validity and internal validity; construct validity and external validity; quasi-experimental designs that either lack a control group or lack pretest observations on the outcome; quasi-experimental designs that use both control groups and pretests; quasi-experiments: interrupted time-series designs; regresssion discontinuity designs; randomised experiments: rationale, designs, and conditions conducive to doing them; practical problems 1: ethics, participation recruitment and random assignment; practical problems 2: treatment implementation and attrition; generalised causal inference: a grounded theory; (...)
    Download  
     
    Export citation  
     
    Bookmark   157 citations  
  • Across the boundaries: extrapolation in biology and social science.Daniel Steel (ed.) - 2007 - New York: Oxford University Press.
    Inferences like these are known as extrapolations.
    Download  
     
    Export citation  
     
    Bookmark   138 citations  
  • Discovering Cell Mechanisms: The Creation of Modern Cell Biology.William Bechtel - 2005 - Cambridge University Press.
    Between 1940 and 1970 pioneers in the new field of cell biology discovered the operative parts of cells and their contributions to cell life. They offered mechanistic accounts that explained cellular phenomena by identifying the relevant parts of cells, the biochemical operations they performed, and the way in which these parts and operations were organised to accomplish important functions. Cell biology was a revolutionary science but in this book it also provides fuel for yet another revolution, one that focuses on (...)
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • (1 other version)Reasoning in Biological Discoveries: Essays on Mechanisms, Interfield Relations, and Anomaly Resolution.Lindley Darden - 2006 - New York: Cambridge University Press.
    Reasoning in Biological Discoveries brings together a series of essays, which focus on one of the most heavily debated topics of scientific discovery. Collected together and richly illustrated, Darden's essays represent a groundbreaking foray into one of the major problems facing scientists and philosophers of science. Divided into three sections, the essays focus on broad themes, notably historical and philosophical issues at play in discussions of biological mechanism; and the problem of developing and refining reasoning strategies, including interfield relations and (...)
    Download  
     
    Export citation  
     
    Bookmark   100 citations  
  • What’s so special about model organisms?Rachel A. Ankeny & Sabina Leonelli - 2011 - Studies in History and Philosophy of Science Part A 42 (2):313-323.
    This paper aims to identify the key characteristics of model organisms that make them a specific type of model within the contemporary life sciences: in particular, we argue that the term “model organism” does not apply to all organisms used for the purposes of experimental research. We explore the differences between experimental and model organisms in terms of their material and epistemic features, and argue that it is essential to distinguish between their representational scope and representational target. We also examine (...)
    Download  
     
    Export citation  
     
    Bookmark   117 citations  
  • Nature's Capacities and Their Measurement.Tim Maudlin & Nancy Cartwright - 1993 - Journal of Philosophy 90 (11):599.
    This book on the philosophy of science argues for an empiricism, opposed to the tradition of David Hume, in which singular rather than general causal claims are primary; causal laws express facts about singular causes whereas the general causal claims of science are ascriptions of capacities or causal powers, capacities to make things happen. Taking science as measurement, Cartwright argues that capacities are necessary for science and that these can be measured, provided suitable conditions are met. There are case studies (...)
    Download  
     
    Export citation  
     
    Bookmark   150 citations  
  • Discovering Cell Mechanisms: The Creation of Modern Cell Biology.William Bechtel - 2007 - Journal of the History of Biology 40 (1):185-187.
    Between 1940 and 1970 pioneers in the new field of cell biology discovered the operative parts of cells and their contributions to cell life. They offered mechanistic accounts that explained cellular phenomena by identifying the relevant parts of cells, the biochemical operations they performed, and the way in which these parts and operations were organised to accomplish important functions. Cell biology was a revolutionary science but in this book it also provides fuel for yet another revolution, one that focuses on (...)
    Download  
     
    Export citation  
     
    Bookmark   153 citations  
  • A History of Molecular Biology.Michel Morange & Matthew Cobb - 1999 - Journal of the History of Biology 32 (3):568-570.
    Download  
     
    Export citation  
     
    Bookmark   103 citations  
  • Conditions for Evolution by Natural Selection.Peter Godfrey-Smith - 2007 - Journal of Philosophy 104 (10):489-516.
    Both biologists and philosophers often make use of simple verbal formulations of necessary and sufficient conditions for evolution by natural selection (ENS). Such summaries go back to Darwin's Origin of Species (especially the "Recapitulation"), but recent ones are more compact.1 Perhaps the most commonly cited formulation is due to Lewontin.2 These summaries tend to have three or four conditions, where the core requirement is a combination of variation, heredity, and fitness differences. The summaries are employed in several ways. First, they (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Functional homology and homology of function: Biological concepts and philosophical consequences.Alan C. Love - 2007 - Biology and Philosophy 22 (5):691-708.
    “Functional homology” appears regularly in different areas of biological research and yet it is apparently a contradiction in terms—homology concerns identity of structure regardless of form and function. I argue that despite this conceptual tension there is a legitimate conception of ‘homology of function’, which can be recovered by utilizing a distinction from pre-Darwinian physiology (use versus activity) to identify an appropriate meaning of ‘function’. This account is directly applicable to molecular developmental biology and shares a connection to the theme (...)
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Phenomena and patterns in data sets.James W. McAllister - 1997 - Erkenntnis 47 (2):217-228.
    Bogen and Woodward claim that the function of scientific theories is to account for 'phenomena', which they describe both as investigator-independent constituents of the world and as corresponding to patterns in data sets. I argue that, if phenomena are considered to correspond to patterns in data, it is inadmissible to regard them as investigator-independent entities. Bogen and Woodward's account of phenomena is thus incoherent. I offer an alternative account, according to which phenomena are investigator-relative entities. All the infinitely many patterns (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • How the choice of experimental organism matters: Epistemological reflections on an aspect of biological practice.Richard M. Burian - 1993 - Journal of the History of Biology 26 (2):351-367.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • The role of replication in psychological science.Samuel C. Fletcher - 2021 - European Journal for Philosophy of Science 11 (1):1-19.
    The replication or reproducibility crisis in psychological science has renewed attention to philosophical aspects of its methodology. I provide herein a new, functional account of the role of replication in a scientific discipline: to undercut the underdetermination of scientific hypotheses from data, typically by hypotheses that connect data with phenomena. These include hypotheses that concern sampling error, experimental control, and operationalization. How a scientific hypothesis could be underdetermined in one of these ways depends on a scientific discipline’s epistemic goals, theoretical (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Mechanisms in Molecular Biology.Tudor Baetu - 2019 - Cambridge University Press.
    The new mechanistic philosophy is divided into two largely disconnected projects. One deals with a metaphysical inquiry into how mechanisms relate to issues such as causation, capacities and levels of organization, while the other deals with epistemic issues related to the discovery of mechanisms and the intelligibility of mechanistic representations. Tudor Baetu explores and explains these projects, and shows how the gap between them can be bridged. His proposed account is compatible both with the assumptions and practices of experimental design (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Are animal models predictive for humans?Niall Shanks, Ray Greek & Jean Greek - 2009 - Philosophy, Ethics, and Humanities in Medicine 4:2.
    It is one of the central aims of the philosophy of science to elucidate the meanings of scientific terms and also to think critically about their application. The focus of this essay is the scientific term predict and whether there is credible evidence that animal models, especially in toxicology and pathophysiology, can be used to predict human outcomes. Whether animals can be used to predict human response to drugs and other chemicals is apparently a contentious issue. However, when one empirically (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Animal models in biomedical research: Some epistemological worries.Hugh LaFollette & Niall Shanks - 1993 - Public Affairs Quarterly 7 (2):113-130.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Brute Science: Dilemmas of Animal Experimentation.Hugh LaFollette & Niall Shanks - 1996 - Ethics and the Environment 4 (1):115-121.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • (1 other version)Model organisms as models: Understanding the 'lingua Franca' of the human genome project.Rachel A. Ankeny - 2001 - Proceedings of the Philosophy of Science Association 2001 (3):S251-.
    Through an examination of the actual research strategies and assumptions underlying the Human Genome Project (HGP), it is argued that the epistemic basis of the initial model organism programs is not best understood as reasoning via causal analog models (CAMs). In order to answer a series of questions about what is being modeled and what claims about the models are warranted, a descriptive epistemological method is employed that uses historical techniques to develop detailed accounts which, in turn, help to reveal (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • The ‘Big Picture’: The Problem of Extrapolation in Basic Research.Tudor M. Baetu - 2016 - British Journal for the Philosophy of Science 67 (4):941-964.
    Both clinical research and basic science rely on the epistemic practice of extrapolation from surrogate models, to the point that explanatory accounts presented in review papers and biology textbooks are in fact composite pictures reconstituted from data gathered in a variety of distinct experimental setups. This raises two new challenges to previously proposed mechanistic-similarity solutions to the problem of extrapolation: one pertaining to the absence of mechanistic knowledge in the early stages of research and the second to the large number (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (1 other version)Model Organisms as Models: Understanding the 'Lingua Franca' of the Human Genome Project.Rachel A. Ankeny - 2001 - Philosophy of Science 68 (S3):S251-S261.
    Through an examination of the actual research strategies and assumptions underlying the Human Genome Project, it is argued that the epistemic basis of the initial model organism programs is not best understood as reasoning via causal analog models. In order to answer a series of questions about what is being modeled and what claims about the models are warranted, a descriptive epistemological method is employed that uses historical techniques to develop detailed accounts which, in turn, help to reveal forms of (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Two models of models in biomedical research.Hugh LaFollette & Niall Shanks - 1995 - Philosophical Quarterly 45 (179):141-160.
    Biomedical researchers claim there is significant biomedical information about humans which can be discovered only through experiments on intact animal systems (AMA p. 2). Although epidemiological studies, computer simulations, clinical investigation, and cell and tissue cultures have become important weapons in the biomedical scientists' arsenal, these are primarily "adjuncts to the use of animals in research" (Sigma Xi p. 76). Controlled laboratory experiments are the core of the scientific enterprise. Biomedical researchers claim these should be conducted on intact biological systems, (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • The Crux of Crucial Experiments: Duhem's Problems and Inference to the Best Explanation.Marcel Weber - 2009 - British Journal for the Philosophy of Science 60 (1):19-49.
    Going back at least to Duhem, there is a tradition of thinking that crucial experiments are impossible in science. I analyse Duhem's arguments and show that they are based on the excessively strong assumption that only deductive reasoning is permissible in experimental science. This opens the possibility that some principle of inductive inference could provide a sufficient reason for preferring one among a group of hypotheses on the basis of an appropriately controlled experiment. To be sure, there are analogues to (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • A New Account of Replication in the Experimental Life Sciences.Stephan Guttinger - 2019 - Philosophy of Science 86 (3):453-471.
    The life sciences are said to be in the midst of a replication crisis because a majority of published results are irreproducible, and scientists rarely replicate existing data. Here I argue that point 2 of this assessment is flawed because there is a hitherto unidentified form of replication in the experimental life sciences, which I call ‘microreplications’. Using a case study from biochemistry, I illustrate how MRs depend on a key element of experimentation, namely, experimental controls. I end by reflecting (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • ‘Saving the phenomena’ and saving the phenomena.Jim Bogen - 2011 - Synthese 182 (1):7-22.
    Empiricists claim that in accepting a scientific theory one should not commit oneself to claims about things that are not observable in the sense of registering on human perceptual systems (according to Van Fraassen’s constructive empiricism) or experimental equipment (according to what I call liberal empiricism ). They also claim scientific theories should be accepted or rejected on the basis of how well they save the phenomena in the sense delivering unified descriptions of natural regularities among things that meet their (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On the Possibility of Crucial Experiments in Biology.Tudor Baetu - 2019 - British Journal for the Philosophy of Science 70 (2):407-429.
    The article analyses in detail the Meselson–Stahl experiment, identifying two novel difficulties for the crucial experiment account, namely, the fragility of the experimental results and the fact that the hypotheses under scrutiny were not mutually exclusive. The crucial experiment account is rejected in favour of an experimental-mechanistic account of the historical significance of the experiment, emphasizing that the experiment generated data about the biochemistry of DNA replication that is independent of the testing of the semi-conservative, conservative, and dispersive hypotheses. _1_ (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations