- Ockham’s Razors: A User’s Manual.Elliott Sober - 2015 - Cambridge: Cambridge University Press.details
|
|
Making AI Meaningful Again.Jobst Landgrebe & Barry Smith - 2021 - Synthese 198 (March):2061-2081.details
|
|
Simplicity.Alan Baker - 2008 - Stanford Encyclopedia of Philosophy.details
|
|
(2 other versions)The explanation game: a formal framework for interpretable machine learning.David S. Watson & Luciano Floridi - 2020 - Synthese 198 (10):1–32.details
|
|
Simplicity As Evidence of Truth.Richard Swinburne - 1997 - Milwaukee: Marquette University Press.details
|
|
Reliable Reasoning: Induction and Statistical Learning Theory.Gilbert Harman & Sanjeev Kulkarni - 2007 - Bradford.details
|
|
Progress as Approximation to the Truth: A Defence of the Verisimilitudinarian Approach.Gustavo Cevolani & Luca Tambolo - 2013 - Erkenntnis 78 (4):921-935.details
|
|
(2 other versions)The explanation game: a formal framework for interpretable machine learning.David S. Watson & Luciano Floridi - 2021 - Synthese 198 (10):9211-9242.details
|
|
(2 other versions)Scientific Progress.I. Niiniluoto - 2012 - In Ed Zalta (ed.), Stanford Encyclopedia of Philosophy. Stanford, CA: Stanford Encyclopedia of Philosophy.details
|
|
Judging machines: philosophical aspects of deep learning.Arno Schubbach - 2019 - Synthese 198 (2):1807-1827.details
|
|
(2 other versions)Scientific progress.Ilkka Niiniluoto - 1980 - Synthese 45 (3):427 - 462.details
|
|
(2 other versions)The Explanation Game: A Formal Framework for Interpretable Machine Learning.David S. Watson & Luciano Floridi - 2021 - In Josh Cowls & Jessica Morley (eds.), The 2020 Yearbook of the Digital Ethics Lab. Springer Verlag. pp. 109-143.details
|
|
No Free Lunch Theorem, Inductive Skepticism, and the Optimality of Meta-induction.Gerhard Schurz - 2017 - Philosophy of Science 84 (5):825-839.details
|
|
Simplicity in the philosophy of science.Simon Fitzpatrick - 2013 - Internet Encyclopedia of Philosophy:xx.details
|
|
The Lack of A Priori Distinctions Between Learning Algorithms.David H. Wolpert - 1996 - Neural Computation 8 (7):1341–1390.details
|
|
The Nature of Statistical Learning Theory.Vladimir Vapnik - 1999 - Springer: New York.details
|
|
Falsificationism and Statistical Learning Theory: Comparing the Popper and Vapnik-Chervonenkis Dimensions.David Corfield, Bernhard Schölkopf & Vladimir Vapnik - 2009 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 40 (1):51-58.details
|
|
Varieties of Justification in Machine Learning.David Corfield - 2010 - Minds and Machines 20 (2):291-301.details
|
|
PAC Learning and Occam’s Razor: Probably Approximately Incorrect.Daniel A. Herrmann - 2020 - Philosophy of Science 87 (4):685-703.details
|
|
Introduction: Machine learning as philosophy of science.Kevin B. Korb - 2004 - Minds and Machines 14 (4):433-440.details
|
|
Testability and Ockham’s Razor: How Formal and Statistical Learning Theory Converge in the New Riddle of Induction.Daniel Steel - 2009 - Journal of Philosophical Logic 38 (5):471-489.details
|
|
Philosophy and machine learning.Paul Thagard - 1990 - Canadian Journal of Philosophy 20 (2):261-76.details
|
|
The Big Data razor.Ezequiel López-Rubio - 2020 - European Journal for Philosophy of Science 10 (2):1-20.details
|
|
A dynamic interaction between machine learning and the philosophy of science.Jon Williamson - 2004 - Minds and Machines 14 (4):539-549.details
|
|
Inductive logic, verisimilitude, and machine learning.Ilkka Niiniluoto - 2005 - In Petr Hájek, Luis Valdés-Villanueva & Dag Westerståhl (eds.), Logic, Methodology, and Philosophy of Science. College Publications. pp. 295/314.details
|
|
Statistical learning theory as a framework for the philosophy of induction.Gilbert Harman & Sanjeev Kulkarni - manuscriptdetails
|
|
The philosophy of science and its relation to machine learning.Jon Williamson - unknowndetails
|
|
Falsification and future performance.David Balduzzi - manuscriptdetails
|
|