Switch to: Citations

Add references

You must login to add references.
  1. The development of Euclidean axiomatics: The systems of principles and the foundations of mathematics in editions of the Elements in the Early Modern Age.Vincenzo De Risi - 2016 - Archive for History of Exact Sciences 70 (6):591-676.
    The paper lists several editions of Euclid’s Elements in the Early Modern Age, giving for each of them the axioms and postulates employed to ground elementary mathematics.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Andre Tacquet et son traite d' ≪ Arithmetique theorique et pratique ≫.H. Bosmans - 1927 - Isis 9 (1):66-82.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Infinitesimal: How a Dangerous Mathematical Theory Shaped the Modern World.Amir Alexander - 2015 - Scientific American / Farrar, Straus and Giroux.
    Pulsing with drama and excitement, Infinitesimal celebrates the spirit of discovery, innovation, and intellectual achievement-and it will forever change the way you look at a simple line. On August 10, 1632, five men in flowing black robes convened in a somber Roman palazzo to pass judgment on a deceptively simple proposition: that a continuous line is composed of distinct and infinitely tiny parts. With the stroke of a pen the Jesuit fathers banned the doctrine of infinitesimals, announcing that it could (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Almost Equal: The Method of Adequality from Diophantus to Fermat and Beyond.Mikhail G. Katz, David M. Schaps & Steven Shnider - 2013 - Perspectives on Science 21 (3):283-324.
    Adequality, or παρισóτης (parisotēs) in the original Greek of Diophantus 1 , is a crucial step in Fermat’s method of finding maxima, minima, tangents, and solving other problems that a modern mathematician would solve using infinitesimal calculus. The method is presented in a series of short articles in Fermat’s collected works (1891, pp. 133–172). The first article, Methodus ad Disquirendam Maximam et Minimam 2 , opens with a summary of an algorithm for finding the maximum or minimum value of an (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.Vladimir Kanovei, Mikhail G. Katz & Thomas Mormann - 2013 - Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • An Integer Construction of Infinitesimals: Toward a Theory of Eudoxus Hyperreals.Alexandre Borovik, Renling Jin & Mikhail G. Katz - 2012 - Notre Dame Journal of Formal Logic 53 (4):557-570.
    A construction of the real number system based on almost homomorphisms of the integers $\mathbb {Z}$ was proposed by Schanuel, Arthan, and others. We combine such a construction with the ultrapower or limit ultrapower construction to construct the hyperreals out of integers. In fact, any hyperreal field, whose universe is a set, can be obtained by such a one-step construction directly out of integers. Even the maximal (i.e., On -saturated) hyperreal number system described by Kanovei and Reeken (2004) and independently (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Cauchy's Continuum.Karin U. Katz & Mikhail G. Katz - 2011 - Perspectives on Science 19 (4):426-452.
    One of the most influential scientific treatises in Cauchy's era was J.-L. Lagrange's Mécanique Analytique, the second edition of which came out in 1811, when Cauchy was barely out of his teens. Lagrange opens his treatise with an unequivocal endorsement of infinitesimals. Referring to the system of infinitesimal calculus, Lagrange writes:Lorsqu'on a bien conçu l'esprit de ce système, et qu'on s'est convaincu de l'exactitude de ses résultats par la méthode géométrique des premières et dernières raisons, ou par la méthode analytique (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus.Alexandre Borovik & Mikhail G. Katz - 2012 - Foundations of Science 17 (3):245-276.
    Cauchy’s contribution to the foundations of analysis is often viewed through the lens of developments that occurred some decades later, namely the formalisation of analysis on the basis of the epsilon-delta doctrine in the context of an Archimedean continuum. What does one see if one refrains from viewing Cauchy as if he had read Weierstrass already? One sees, with Felix Klein, a parallel thread for the development of analysis, in the context of an infinitesimal-enriched continuum. One sees, with Emile Borel, (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography.Karin Usadi Katz & Mikhail G. Katz - 2012 - Foundations of Science 17 (1):51-89.
    We analyze the developments in mathematical rigor from the viewpoint of a Burgessian critique of nominalistic reconstructions. We apply such a critique to the reconstruction of infinitesimal analysis accomplished through the efforts of Cantor, Dedekind, and Weierstrass; to the reconstruction of Cauchy’s foundational work associated with the work of Boyer and Grabiner; and to Bishop’s constructivist reconstruction of classical analysis. We examine the effects of a nominalist disposition on historiography, teaching, and research.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Interpreting the Infinitesimal Mathematics of Leibniz and Euler.Jacques Bair, Piotr Błaszczyk, Robert Ely, Valérie Henry, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Thomas McGaffey, Patrick Reeder, David M. Schaps, David Sherry & Steven Shnider - 2017 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (2):195-238.
    We apply Benacerraf’s distinction between mathematical ontology and mathematical practice to examine contrasting interpretations of infinitesimal mathematics of the seventeenth and eighteenth century, in the work of Bos, Ferraro, Laugwitz, and others. We detect Weierstrass’s ghost behind some of the received historiography on Euler’s infinitesimal mathematics, as when Ferraro proposes to understand Euler in terms of a Weierstrassian notion of limit and Fraser declares classical analysis to be a “primary point of reference for understanding the eighteenth-century theories.” Meanwhile, scholars like (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Comments on a Paper on Alleged Misconceptions Regarding the History of Analysis: Who Has Misconceptions?Gert Schubring - 2016 - Foundations of Science 21 (3):527-532.
    This comment is analysing the last section of a paper by Piotr Blaszczyk, Mikhail G. Katz, and David Sherry on alleged misconceptions committed by historians of mathematics regarding the history of analysis, published in this journal in the first issue of 2013. Since this section abounds of wrong attributions and denouncing statements regarding my research and a key publication, the comment serves to rectify them and to recall some minimal methodological requirements for historical research.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Cauchy-Dirac Delta Function.Mikhail G. Katz & David Tall - 2013 - Foundations of Science 18 (1):107-123.
    The Dirac δ function has solid roots in nineteenth century work in Fourier analysis and singular integrals by Cauchy and others, anticipating Dirac’s discovery by over a century, and illuminating the nature of Cauchy’s infinitesimals and his infinitesimal definition of δ.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond. [REVIEW]Mikhail G. Katz & David Sherry - 2013 - Erkenntnis 78 (3):571-625.
    Many historians of the calculus deny significant continuity between infinitesimal calculus of the seventeenth century and twentieth century developments such as Robinson’s theory. Robinson’s hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Philosophy of mathematics and deductive structure in Euclid's Elements.Ian Mueller - 1981 - Mineola, N.Y.: Dover Publications.
    A survey of Euclid's Elements, this text provides an understanding of the classical Greek conception of mathematics and its similarities to modern views as well as its differences. It focuses on philosophical, foundational, and logical questions — rather than strictly historical and mathematical issues — and features several helpful appendixes.
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Philosophy of mathematics and mathematical practice in the seventeenth century.Paolo Mancosu (ed.) - 1996 - New York: Oxford University Press.
    The seventeenth century saw dramatic advances in mathematical theory and practice. With the recovery of many of the classical Greek mathematical texts, new techniques were introduced, and within 100 years, the rules of analytic geometry, geometry of indivisibles, arithmatic of infinites, and calculus were developed. Although many technical studies have been devoted to these innovations, Mancosu provides the first comprehensive account of the relationship between mathematical advances of the seventeenth century and the philosophy of mathematics of the period. Starting with (...)
    Download  
     
    Export citation  
     
    Bookmark   94 citations  
  • Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820.Detlef Laugwitz - 1989 - Archive for History of Exact Sciences 39 (3):195-245.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • In defence of geometrical algebra.Viktor Blåsjö - 2016 - Archive for History of Exact Sciences 70 (3):325-359.
    The geometrical algebra hypothesis was once the received interpretation of Greek mathematics. In recent decades, however, it has become anathema to many. I give a critical review of all arguments against it and offer a consistent rebuttal case against the modern consensus. Consequently, I find that the geometrical algebra interpretation should be reinstated as a viable historical hypothesis.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Ten Misconceptions from the History of Analysis and Their Debunking.Piotr Błaszczyk, Mikhail G. Katz & David Sherry - 2013 - Foundations of Science 18 (1):43-74.
    The widespread idea that infinitesimals were “eliminated” by the “great triumvirate” of Cantor, Dedekind, and Weierstrass is refuted by an uninterrupted chain of work on infinitesimal-enriched number systems. The elimination claim is an oversimplification created by triumvirate followers, who tend to view the history of analysis as a pre-ordained march toward the radiant future of Weierstrassian epsilontics. In the present text, we document distortions of the history of analysis stemming from the triumvirate ideology of ontological minimalism, which identified the continuum (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Stevin Numbers and Reality.Karin Usadi Katz & Mikhail G. Katz - 2012 - Foundations of Science 17 (2):109-123.
    We explore the potential of Simon Stevin’s numbers, obscured by shifting foundational biases and by 19th century developments in the arithmetisation of analysis.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Éléments d'histoire des mathématiques.Nicolas Bourbaki - 1961 - Les Etudes Philosophiques 16 (2):244-244.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • (1 other version)Galileo Heretic.Pietro Redondi - 1987 - Princeton University Press.
    Draws on new evidence to argue that the Jesuits had plotted Galileo's downfall for reasons other than his beliefs about astronomy.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Infinitesimals, Imaginaries, Ideals, and Fictions.David Sherry & Mikhail Katz - 2012 - Studia Leibnitiana 44 (2):166-192.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The development of Euclidean axiomatics.Vincenzo Risi - 2016 - Archive for History of Exact Sciences 70 (6):591-676.
    The paper lists several editions of Euclid’s Elements in the Early Modern Age, giving for each of them the axioms and postulates employed to ground elementary mathematics.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • "because The Authority Of My Superiors Commands": Censorship, Physics And The German Jesuits 1.Marcus Hellyer - 1996 - Early Science and Medicine 1 (3):319-354.
    The Society of Jesus established an extensive range of measures designed to ensure uniformity in natural philosophical questions. These culminated in the Ordinatio pro Studiis Superioribus of 1651. Such measures did have significant effects on the teaching and publishing of physics among the Jesuits in Germany; it was impossible for Jesuits to openly adhere to atomism, the Cartesian view of body or heliocentrism, for example. But many Jesuits did not agree with all the provisions governing censorship and attempted to mediate (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Philosophy of Mathematics and Deductive Structure of Euclid 's "Elements".Ian Mueller - 1983 - British Journal for the Philosophy of Science 34 (1):57-70.
    Download  
     
    Export citation  
     
    Bookmark   67 citations