Switch to: References

Citations of:

Philosophy of mathematics and deductive structure in Euclid's Elements

Mineola, N.Y.: Dover Publications (1981)

Add citations

You must login to add citations.
  1. Euclid’s Kinds and (Their) Attributes.Benjamin Wilck - 2020 - History of Philosophy & Logical Analysis 23 (2):362-397.
    Relying upon a very close reading of all of the definitions given in Euclid’s Elements, I argue that this mathematical treatise contains a philosophical treatment of mathematical objects. Specifically, I show that Euclid draws elaborate metaphysical distinctions between substances and non-substantial attributes of substances, different kinds of substance, and different kinds of non-substance. While the general metaphysical theory adopted in the Elements resembles that of Aristotle in many respects, Euclid does not employ Aristotle’s terminology, or indeed, any philosophical terminology at (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Geometrical objects and figures in practical, pure, and applied geometry.Mario Bacelar Valente - 2020 - Disputatio. Philosophical Research Bulletin 9 (15):33-51.
    The purpose of this work is to address what notion of geometrical object and geometrical figure we have in different kinds of geometry: practical, pure, and applied. Also, we address the relation between geometrical objects and figures when this is possible, which is the case of pure and applied geometry. In practical geometry it turns out that there is no conception of geometrical object.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cognitive processing of spatial relations in Euclidean diagrams.Yacin Hamami, Milan N. A. van der Kuil, Ineke J. M. van der Ham & John Mumma - 2020 - Acta Psychologica 205:1--10.
    The cognitive processing of spatial relations in Euclidean diagrams is central to the diagram-based geometric practice of Euclid's Elements. In this study, we investigate this processing through two dichotomies among spatial relations—metric vs topological and exact vs co-exact—introduced by Manders in his seminal epistemological analysis of Euclid's geometric practice. To this end, we carried out a two-part experiment where participants were asked to judge spatial relations in Euclidean diagrams in a visual half field task design. In the first part, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Observation about Truth.David Kashtan - 2017 - Dissertation, University of Jerusalem
    Tarski's analysis of the concept of truth gives rise to a hierarchy of languages. Does this fragment the concept all the way to philosophical unacceptability? I argue it doesn't, drawing on a modification of Kaplan's theory of indexicals.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Zeno Beach.Jacob Rosen - 2020 - Phronesis 65 (4):467-500.
    On Zeno Beach there are infinitely many grains of sand, each half the size of the last. Supposing Aristotle denied the possibility of Zeno Beach, did he have a good argument for the denial? Three arguments, each of ancient origin, are examined: the beach would be infinitely large; the beach would be impossible to walk across; the beach would contain a part equal to the whole, whereas parts must be lesser. It is attempted to show that none of these arguments (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Geometry and arithmetic in the medieval traditions of Euclid’s Elements: a view from Book II.Leo Corry - 2013 - Archive for History of Exact Sciences 67 (6):637-705.
    This article explores the changing relationships between geometric and arithmetic ideas in medieval Europe mathematics, as reflected via the propositions of Book II of Euclid’s Elements. Of particular interest is the way in which some medieval treatises organically incorporated into the body of arithmetic results that were formulated in Book II and originally conceived in a purely geometric context. Eventually, in the Campanus version of the Elements these results were reincorporated into the arithmetic books of the Euclidean treatise. Thus, while (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • From practical to pure geometry and back.Mario Bacelar Valente - 2020 - Revista Brasileira de História da Matemática 20 (39):13-33.
    The purpose of this work is to address the relation existing between ancient Greek practical geometry and ancient Greek pure geometry. In the first part of the work, we will consider practical and pure geometry and how pure geometry can be seen, in some respects, as arising from an idealization of practical geometry. From an analysis of relevant extant texts, we will make explicit the idealizations at play in pure geometry in relation to practical geometry, some of which are basically (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Axiomatizing Changing Conceptions of the Geometric Continuum II: Archimedes-Descartes-Hilbert-Tarski†.John T. Baldwin - 2019 - Philosophia Mathematica 27 (1):33-60.
    In Part I of this paper we argued that the first-order systems HP5 and EG are modest complete descriptive axiomatization of most of Euclidean geometry. In this paper we discuss two further modest complete descriptive axiomatizations: Tarksi’s for Cartesian geometry and new systems for adding $$\pi$$. In contrast we find Hilbert’s full second-order system immodest for geometrical purposes but appropriate as a foundation for mathematical analysis.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Axiomatizing Changing Conceptions of the Geometric Continuum I: Euclid-Hilbert†.John T. Baldwin - 2018 - Philosophia Mathematica 26 (3):346-374.
    We give a general account of the goals of axiomatization, introducing a variant on Detlefsen’s notion of ‘complete descriptive axiomatization’. We describe how distinctions between the Greek and modern view of number, magnitude, and proportion impact the interpretation of Hilbert’s axiomatization of geometry. We argue, as did Hilbert, that Euclid’s propositions concerning polygons, area, and similar triangles are derivable from Hilbert’s first-order axioms. We argue that Hilbert’s axioms including continuity show much more than the geometrical propositions of Euclid’s theorems and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Kant's Conception of Number.Daniel Sutherland - 2017 - Philosophical Review Current Issue 126 (2):147-190.
    Despite the importance of Kant's claims about mathematical cognition for his philosophy as a whole and for subsequent philosophy of mathematics, there is still no consensus on his philosophy of arithmetic, and in particular the role he assigns intuition in it. This inquiry sets aside the role of intuition for the nonce to investigate Kant's conception of natural number. Although Kant himself doesn't distinguish between a cardinal and an ordinal conception of number, some of the properties Kant attributes to number (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Interpreting the Infinitesimal Mathematics of Leibniz and Euler.Jacques Bair, Piotr Błaszczyk, Robert Ely, Valérie Henry, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Thomas McGaffey, Patrick Reeder, David M. Schaps, David Sherry & Steven Shnider - 2017 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (2):195-238.
    We apply Benacerraf’s distinction between mathematical ontology and mathematical practice to examine contrasting interpretations of infinitesimal mathematics of the seventeenth and eighteenth century, in the work of Bos, Ferraro, Laugwitz, and others. We detect Weierstrass’s ghost behind some of the received historiography on Euler’s infinitesimal mathematics, as when Ferraro proposes to understand Euler in terms of a Weierstrassian notion of limit and Fraser declares classical analysis to be a “primary point of reference for understanding the eighteenth-century theories.” Meanwhile, scholars like (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Why Euclid’s geometry brooked no doubt: J. H. Lambert on certainty and the existence of models.Katherine Dunlop - 2009 - Synthese 167 (1):33-65.
    J. H. Lambert proved important results of what we now think of as non-Euclidean geometries, and gave examples of surfaces satisfying their theorems. I use his philosophical views to explain why he did not think the certainty of Euclidean geometry was threatened by the development of what we regard as alternatives to it. Lambert holds that theories other than Euclid's fall prey to skeptical doubt. So despite their satisfiability, for him these theories are not equal to Euclid's in justification. Contrary (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The twofold role of diagrams in Euclid’s plane geometry.Marco Panza - 2012 - Synthese 186 (1):55-102.
    Proposition I.1 is, by far, the most popular example used to justify the thesis that many of Euclid’s geometric arguments are diagram-based. Many scholars have recently articulated this thesis in different ways and argued for it. My purpose is to reformulate it in a quite general way, by describing what I take to be the twofold role that diagrams play in Euclid’s plane geometry (EPG). Euclid’s arguments are object-dependent. They are about geometric objects. Hence, they cannot be diagram-based unless diagrams (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The Uses of Argument in Mathematics.Andrew Aberdein - 2005 - Argumentation 19 (3):287-301.
    Stephen Toulmin once observed that ”it has never been customary for philosophers to pay much attention to the rhetoric of mathematical debate’ [Toulmin et al., 1979, An Introduction to Reasoning, Macmillan, London, p. 89]. Might the application of Toulmin’s layout of arguments to mathematics remedy this oversight? Toulmin’s critics fault the layout as requiring so much abstraction as to permit incompatible reconstructions. Mathematical proofs may indeed be represented by fundamentally distinct layouts. However, cases of genuine conflict characteristically reflect an underlying (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • A formal system for euclid’s elements.Jeremy Avigad, Edward Dean & John Mumma - 2009 - Review of Symbolic Logic 2 (4):700--768.
    We present a formal system, E, which provides a faithful model of the proofs in Euclid's Elements, including the use of diagrammatic reasoning.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Guía para una primera lectura de Los fundamentos de la aritmética de Gottlob Frege.Francisco Manuel Sauri-Mercader - manuscript
    El presente texto es una guía para una primera lectura de los Los fundamentos de la aritmética de Gottlob Frege para estudiantes del grado de Filosofía. -/- No pretende hacer ninguna aportación a la investigación sobre Frege sino ofrecer los instrumentos para hacer una primera lectura mediante la recopilación y la ordenación de los textos relevantes de los estudiosos de Frege, especialmente de la literatura en inglés. En la mayor parte de los casos, las referencias a otros autores (Autorfecha) preceden (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Kant, Infinite Space, and Decomposing Synthesis.Aaron Wells - manuscript
    Draft for presentation at the 14th International Kant-Congress, September 2024. -/- Abstract: Kant claims we intuit infinite space. There’s a problem: Kant thinks full awareness of infinite space requires synthesis—the act of putting representations together and comprehending them as one. But our ability to synthesize is finite. Tobias Rosefeldt has argued in a recent paper that Kant’s notion of decomposing synthesis offers a solution. This talk criticizes Rosefeldt’s approach. First, Rosefeldt is committed to nonconceptual yet determinate awareness of (potentially) infinite (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Grothendieck’s theory of schemes and the algebra–geometry duality.Gabriel Catren & Fernando Cukierman - 2022 - Synthese 200 (3):1-41.
    We shall address from a conceptual perspective the duality between algebra and geometry in the framework of the refoundation of algebraic geometry associated to Grothendieck’s theory of schemes. To do so, we shall revisit scheme theory from the standpoint provided by the problem of recovering a mathematical structure A from its representations \ into other similar structures B. This vantage point will allow us to analyze the relationship between the algebra-geometry duality and the structure-semiotics duality. Whereas in classical algebraic geometry (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the relationship between geometric objects and figures in Euclidean geometry.Mario Bacelar Valente - 2021 - In Diagrammatic Representation and Inference. 12th International Conference, Diagrams 2021. pp. 71-78.
    In this paper, we will make explicit the relationship that exists between geometric objects and geometric figures in planar Euclidean geometry. That will enable us to determine basic features regarding the role of geometric figures and diagrams when used in the context of pure and applied planar Euclidean geometry, arising due to this relationship. By taking into account pure geometry, as developed in Euclid’s Elements, and practical geometry, we will establish a relation between geometric objects and figures. Geometric objects are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Can the Pyrrhonian Sceptic Suspend Belief Regarding Scientific Definitions?Benjamin Wilck - 2020 - History of Philosophy & Logical Analysis 23 (1):253-288.
    In this article, I tackle a heretofore unnoticed difficulty with the application of Pyrrhonian scepticism to science. Sceptics can suspend belief regarding a dogmatic proposition only by setting up opposing arguments for and against that proposition. Since Sextus provides arguments exclusively against particular geometrical definitions in Adversus Mathematicos III, commentators have argued that Sextus’ method is not scepticism, but negative dogmatism. However, commentators have overlooked the fact that arguments in favour of particular geometrical definitions were absent in ancient geometry, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Definition in mathematics.Carlo Cellucci - 2018 - European Journal for Philosophy of Science 8 (3):605-629.
    In the past century the received view of definition in mathematics has been the stipulative conception, according to which a definition merely stipulates the meaning of a term in other terms which are supposed to be already well known. The stipulative conception has been so absolutely dominant and accepted as unproblematic that the nature of definition has not been much discussed, yet it is inadequate. This paper examines its shortcomings and proposes an alternative, the heuristic conception.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Methodology for Teaching Logic-Based Skills to Mathematics Students.Arnold Cusmariu - 2016 - Symposion: Theoretical and Applied Inquiries in Philosophy and Social Sciences 3 (3):259-292.
    Mathematics textbooks teach logical reasoning by example, a practice started by Euclid; while logic textbooks treat logic as a subject in its own right without practical application to mathematics. Stuck in the middle are students seeking mathematical proficiency and educators seeking to provide it. To assist them, the article explains in practical detail how to teach logic-based skills such as: making mathematical reasoning fully explicit; moving from step to step in a mathematical proof in logically correct ways; and checking to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Controversies in the Foundations of Analysis: Comments on Schubring’s Conflicts.Piotr Błaszczyk, Vladimir Kanovei, Mikhail G. Katz & David Sherry - 2017 - Foundations of Science 22 (1):125-140.
    Foundations of Science recently published a rebuttal to a portion of our essay it published 2 years ago. The author, G. Schubring, argues that our 2013 text treated unfairly his 2005 book, Conflicts between generalization, rigor, and intuition. He further argues that our attempt to show that Cauchy is part of a long infinitesimalist tradition confuses text with context and thereby misunderstands the significance of Cauchy’s use of infinitesimals. Here we defend our original analysis of various misconceptions and misinterpretations concerning (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Bridging the gap between analytic and synthetic geometry: Hilbert’s axiomatic approach.Eduardo N. Giovannini - 2016 - Synthese 193 (1):31-70.
    The paper outlines an interpretation of one of the most important and original contributions of David Hilbert’s monograph Foundations of Geometry , namely his internal arithmetization of geometry. It is claimed that Hilbert’s profound interest in the problem of the introduction of numbers into geometry responded to certain epistemological aims and methodological concerns that were fundamental to his early axiomatic investigations into the foundations of elementary geometry. In particular, it is shown that a central concern that motivated Hilbert’s axiomatic investigations (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On the Origin of Symbolic Mathematics and Its Significance for Wittgenstein’s Thought.Sören Stenlund - 2015 - Nordic Wittgenstein Review 4 (1):7-92.
    The main topic of this essay is symbolic mathematics or the method of symbolic construction, which I trace to the end of the sixteenth century when Franciscus Vieta invented the algebraic symbolism and started to use the word ‘symbolic’ in the relevant, non-ontological sense. This approach has played an important role for many of the great inventions in modern mathematics such as the introduction of the decimal place-value system of numeration, Descartes’ analytic geometry, and Leibniz’s infinitesimal calculus. It was also (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Cognitive Artifacts for Geometric Reasoning.Mateusz Hohol & Marcin Miłkowski - 2019 - Foundations of Science 24 (4):657-680.
    In this paper, we focus on the development of geometric cognition. We argue that to understand how geometric cognition has been constituted, one must appreciate not only individual cognitive factors, such as phylogenetically ancient and ontogenetically early core cognitive systems, but also the social history of the spread and use of cognitive artifacts. In particular, we show that the development of Greek mathematics, enshrined in Euclid’s Elements, was driven by the use of two tightly intertwined cognitive artifacts: the use of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Beginnings of Formal Logic: Deduction in Aristotle’s Topics vs. Prior Analytics.Marko Malink - 2015 - Phronesis 60 (3):267-309.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Two Approaches to Foundations in Greek Mathematics: Apollonius and Geminus.Fabio Acerbi - 2010 - Science in Context 23 (2):151-186.
    ArgumentThis article is the sequel to an article published in the previous issue ofScience in Contextthat dealt with homeomeric lines (Acerbi 2010). The present article deals with foundational issues in Greek mathematics. It considers two key characters in the study of mathematical homeomery, namely, Apollonius and Geminus, and analyzes in detail their approaches to foundational themes as they are attested in ancient sources. The main historiographical result of this paper is to show thatthere wasa well-establishedmathematicalfield of discourse in “foundations of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Aristotle and mathematics.Henry Mendell - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Proofs, pictures, and Euclid.John Mumma - 2010 - Synthese 175 (2):255 - 287.
    Though pictures are often used to present mathematical arguments, they are not typically thought to be an acceptable means for presenting mathematical arguments rigorously. With respect to the proofs in the Elements in particular, the received view is that Euclid's reliance on geometric diagrams undermines his efforts to develop a gap-free deductive theory. The central difficulty concerns the generality of the theory. How can inferences made from a particular diagrams license general mathematical results? After surveying the history behind the received (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Arguing on the Toulmin Model: New Essays in Argument Analysis and Evaluation.David Hitchcock & Bart Verheij (eds.) - 2006 - Dordrecht, Netherland: Springer.
    In The Uses of Argument, Stephen Toulmin proposed a model for the layout of arguments: claim, data, warrant, qualifier, rebuttal, backing. Since then, Toulmin’s model has been appropriated, adapted and extended by researchers in speech communications, philosophy and artificial intelligence. This book assembles the best contemporary reflection in these fields, extending or challenging Toulmin’s ideas in ways that make fresh contributions to the theory of analysing and evaluating arguments.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • David Hilbert and the foundations of the theory of plane area.Eduardo N. Giovannini - 2021 - Archive for History of Exact Sciences 75 (6):649-698.
    This paper provides a detailed study of David Hilbert’s axiomatization of the theory of plane area, in the classical monograph Foundation of Geometry. On the one hand, we offer a precise contextualization of this theory by considering it against its nineteenth-century geometrical background. Specifically, we examine some crucial steps in the emergence of the modern theory of geometrical equivalence. On the other hand, we analyze from a more conceptual perspective the significance of Hilbert’s theory of area for the foundational program (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Arithmetizing the geometry from inside: David Hilbert's segment calculus.Eduardo Nicolás Giovannini - 2015 - Scientiae Studia 13 (1):11-48.
    Sobre la base que aportan las notas manuscritas de David Hilbert para cursos sobre geometría, el artículo procura contextualizar y analizar una de las contribuciones más importantes y novedosas de su célebre monografía Fundamentos de la geometría, a saber: el cálculo de segmentos lineales. Se argumenta que, además de ser un resultado matemático importante, Hilbert depositó en su aritmética de segmentos un destacado significado epistemológico y metodológico. En particular, se afirma que para Hilbert este resultado representaba un claro ejemplo de (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Concepts and Investigative Practice.Dirk Schlimm - 2012 - In Uljana Feest & Friedrich Steinle (eds.), Scientific Concepts and Investigative Practice. de Gruyter. pp. 127-148.
    In this paper I investigate two notions of concepts that have played a dominant role in 20th century philosophy of mathematics. According to the first, concepts are definite and fixed; in contrast, according to the second notion concepts are open and subject to modifications. The motivations behind these two incompatible notions and how they can be used to account for conceptual change are presented and discussed. On the basis of historical developments in mathematics I argue that both notions of concepts (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Completion, reduction and analysis: three proof-theoretic processes in aristotle’s prior analytics.George Boger - 1998 - History and Philosophy of Logic 19 (4):187-226.
    Three distinctly different interpretations of Aristotle’s notion of a sullogismos in Prior Analytics can be traced: (1) a valid or invalid premise-conclusion argument (2) a single, logically true conditional proposition and (3) a cogent argumentation or deduction. Remarkably the three interpretations hold similar notions about the logical relationships among the sullogismoi. This is most apparent in their conflating three processes that Aristotle especially distinguishes: completion (A4-6)reduction(A7) and analysis (A45). Interpretive problems result from not sufficiently recognizing Aristotle’s remarkable degree of metalogical (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Kant’s Philosophy of Mathematics and the Greek Mathematical Tradition.Daniel Sutherland - 2004 - Philosophical Review 113 (2):157-201.
    The aggregate EIRP of an N-element antenna array is proportional to N 2. This observation illustrates an effective approach for providing deep space networks with very powerful uplinks. The increased aggregate EIRP can be employed in a number of ways, including improved emergency communications, reaching farther into deep space, increased uplink data rates, and the flexibility of simultaneously providing more than one uplink beam with the array. Furthermore, potential for cost savings also exists since the array can be formed using (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Aristarchus's On the Sizes and Distances of the Sun and the Moon: Greek and Arabic Texts.Nathan Sidoli & J. L. Berggren - 2007 - Archive for History of Exact Sciences 61 (3):213-254.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)A Framework for Defining the Generality of Diophantos' Methods in "Arithmetica".Yannis Thomaidis - 2005 - Archive for History of Exact Sciences 59 (6):591-640.
    Diophantos' solutions to the problems of Arithmetica have been the object of extensive reading and interpretation in modern times, especially from the point of view of identifying ``hidden steps'' or ``general methods''. In this paper, after examining the relevance of various interpretations given for the famous problem II 8 in the context of modern algebra or geometry, we focus on a close reading of the ancient text of some problems of Arithmetica in order to investigate Diophantos' solving practices. This inquiry (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • In defence of geometrical algebra.Viktor Blåsjö - 2016 - Archive for History of Exact Sciences 70 (3):325-359.
    The geometrical algebra hypothesis was once the received interpretation of Greek mathematics. In recent decades, however, it has become anathema to many. I give a critical review of all arguments against it and offer a consistent rebuttal case against the modern consensus. Consequently, I find that the geometrical algebra interpretation should be reinstated as a viable historical hypothesis.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the Foundations of Greek Arithmetic.Holger A. Leuz - 2009 - History of Philosophy & Logical Analysis 12 (1):13-47.
    The aim of this essay is to develop a formal reconstruction of Greek arithmetic. The reconstruction is based on textual evidence which comes mainly from Euclid, but also from passages in the texts of Plato and Aristotle. Following Paul Pritchard’s investigation into the meaning of the Greek term arithmos, the reconstruction will be mereological rather than set-theoretical. It is shown that the reconstructed system gives rise to an arithmetic comparable in logical strength to Robinson arithmetic. Our reconstructed Greek arithmetic is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • El enfoque epistemológico de David Hilbert: el a priori del conocimiento y el papel de la lógica en la fundamentación de la ciencia.Rodrigo Lopez-Orellana - 2019 - Principia: An International Journal of Epistemology 23 (2):279-308.
    This paper explores the main philosophical approaches of David Hilbert’s theory of proof. Specifically, it is focuses on his ideas regarding logic, the concept of proof, the axiomatic, the concept of truth, metamathematics, the a priori knowledge and the general nature of scientific knowledge. The aim is to show and characterize his epistemological approach on the foundation of knowledge, where logic appears as a guarantee of that foundation. Hilbert supposes that the propositional apriorism, proposed by him to support mathematics, sustains (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • François Viète’s revolution in algebra.Jeffrey A. Oaks - 2018 - Archive for History of Exact Sciences 72 (3):245-302.
    Françios Viète was a geometer in search of better techniques for astronomical calculation. Through his theorem on angular sections he found a use for higher-dimensional geometric magnitudes which allowed him to create an algebra for geometry. We show that unlike traditional numerical algebra, the knowns and unknowns in Viète’s logistice speciosa are the relative sizes of non-arithmetized magnitudes in which the “calculations” must respect dimension. Along with this foundational shift Viète adopted a radically new notation based in Greek geometric equalities. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Euclid’s Common Notions and the Theory of Equivalence.Vincenzo De Risi - 2020 - Foundations of Science 26 (2):301-324.
    The “common notions” prefacing the Elements of Euclid are a very peculiar set of axioms, and their authenticity, as well as their actual role in the demonstrations, have been object of debate. In the first part of this essay, I offer a survey of the evidence for the authenticity of the common notions, and conclude that only three of them are likely to have been in place at the times of Euclid, whereas others were added in Late Antiquity. In the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mathematical Generality, Letter-Labels, and All That.F. Acerbi - 2020 - Phronesis 65 (1):27-75.
    This article focusses on the generality of the entities involved in a geometric proof of the kind found in ancient Greek treatises: it shows that the standard modern translation of Greek mathematical propositions falsifies crucial syntactical elements, and employs an incorrect conception of the denotative letters in a Greek geometric proof; epigraphic evidence is adduced to show that these denotative letters are ‘letter-labels’. On this basis, the article explores the consequences of seeing that a Greek mathematical proposition is fully general, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The mathematical form of measurement and the argument for Proposition I in Newton’s Principia.Katherine Dunlop - 2012 - Synthese 186 (1):191-229.
    Newton characterizes the reasoning of Principia Mathematica as geometrical. He emulates classical geometry by displaying, in diagrams, the objects of his reasoning and comparisons between them. Examination of Newton’s unpublished texts shows that Newton conceives geometry as the science of measurement. On this view, all measurement ultimately involves the literal juxtaposition—the putting-together in space—of the item to be measured with a measure, whose dimensions serve as the standard of reference, so that all quantity is ultimately related to spatial extension. I (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Relationship between Hypotheses and Images in the Mathematical Subsection of the Divided Line of Plato's Republic.Moon-Heum Yang - 2005 - Dialogue 44 (2):285-312.
    RésuméEn expliquant la relation entre hypothèses et images dans l'analogie de la ligne du livre Vl de laRépubliquede Platon, je m'attarde d'abordsur l'élucidation platonicienne de la nature des mathématiques telle que la conçoit le mathématicien lui-même. Je poursuis avec une critique des interprétations traditionnelles de cette relation, qui partent de l'assomption douteuse que les mathématiques s'occupent des Formes platoniciennes. Pour formuler mon point de vue sur cette relation, j'exploite la notion de «structure». Je montre comment les «hypothèses» comme principes de (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Erkenntnistheorie der zahldefinition und philosophische grundlegung der arithmetik unter bezugnahme auf einen vergleich Von Gottlob freges logizismus und platonischer philosophie (syrian, theon Von smyrna U.A.).Markus Schmitz - 2001 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 32 (2):271-305.
    The epistomology of the definition of number and the philosophical foundation of arithmetic based on a comparison between Gottlob Frege's logicism and Platonic philosophy (Syrianus, Theo Smyrnaeus, and others). The intention of this article is to provide arithmetic with a logically and methodologically valid definition of number for construing a consistent philosophical foundation of arithmetic. The – surely astonishing – main thesis is that instead of the modern and contemporary attempts, especially in Gottlob Frege's Foundations of Arithmetic, such a definition (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • For Some Histories of Greek Mathematics.Roy Wagner - 2009 - Science in Context 22 (4):535-565.
    ArgumentThis paper argues for the viability of a different philosophical point of view concerning classical Greek geometry. It reviews Reviel Netz's interpretation of classical Greek geometry and offers a Deleuzian, post-structural alternative. Deleuze's notion of haptic vision is imported from its art history context to propose an analysis of Greek geometric practices that serves as counterpoint to their linear modular cognitive narration by Netz. Our interpretation highlights the relation between embodied practices, noisy material constraints, and operational codes. Furthermore, it sheds (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Inconsistency in mathematics and the mathematics of inconsistency.Jean Paul van Bendegem - 2014 - Synthese 191 (13):3063-3078.
    No one will dispute, looking at the history of mathematics, that there are plenty of moments where mathematics is “in trouble”, when paradoxes and inconsistencies crop up and anomalies multiply. This need not lead, however, to the view that mathematics is intrinsically inconsistent, as it is compatible with the view that these are just transient moments. Once the problems are resolved, consistency (in some sense or other) is restored. Even when one accepts this view, what remains is the question what (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Eudoxos and dedekind: On the ancient greek theory of ratios and its relation to modern mathematics.Howard Stein - 1990 - Synthese 84 (2):163 - 211.
    Download  
     
    Export citation  
     
    Bookmark   23 citations