Switch to: Citations

Add references

You must login to add references.
  1. Best solving modal equations.Silvio Ghilardi - 2000 - Annals of Pure and Applied Logic 102 (3):183-198.
    We show that some common varieties of modal K4-algebras have finitary unification type, thus providing effective best solutions for equations in free algebras. Applications to admissible inference rules are immediate.
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Rules of inference with parameters for intuitionistic logic.Vladimir V. Rybakov - 1992 - Journal of Symbolic Logic 57 (3):912-923.
    An algorithm recognizing admissibility of inference rules in generalized form (rules of inference with parameters or metavariables) in the intuitionistic calculus H and, in particular, also in the usual form without parameters, is presented. This algorithm is obtained by means of special intuitionistic Kripke models, which are constructed for a given inference rule. Thus, in particular, the direct solution by intuitionistic techniques of Friedman's problem is found. As a corollary an algorithm for the recognition of the solvability of logical equations (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • On the structural completeness of some pure implicational propositional calculi.Tadeusz Prucnal - 1972 - Studia Logica 30 (1):45 - 52.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Logics containing k4. part I.Kit Fine - 1974 - Journal of Symbolic Logic 39 (1):31-42.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Singly generated quasivarieties and residuated structures.Tommaso Moraschini, James G. Raftery & Johann J. Wannenburg - 2020 - Mathematical Logic Quarterly 66 (2):150-172.
    A quasivariety of algebras has the joint embedding property (JEP) if and only if it is generated by a single algebra A. It is structurally complete if and only if the free ℵ0‐generated algebra in can serve as A. A consequence of this demand, called ‘passive structural completeness’ (PSC), is that the nontrivial members of all satisfy the same existential positive sentences. We prove that if is PSC then it still has the JEP, and if it has the JEP and (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Hereditarily Structurally Complete Superintuitionistic Deductive Systems.Alex Citkin - 2018 - Studia Logica 106 (4):827-856.
    Propositional logic is understood as a set of theorems defined by a deductive system: a set of axioms and a set of rules. Superintuitionistic logic is a logic extending intuitionistic propositional logic \. A rule is admissible for a logic if any substitution that makes each premise a theorem, makes the conclusion a theorem too. A deductive system \ is structurally complete if any rule admissible for the logic defined by \ is derivable in \. It is known that any (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Admissible Rules and the Leibniz Hierarchy.James G. Raftery - 2016 - Notre Dame Journal of Formal Logic 57 (4):569-606.
    This paper provides a semantic analysis of admissible rules and associated completeness conditions for arbitrary deductive systems, using the framework of abstract algebraic logic. Algebraizability is not assumed, so the meaning and significance of the principal notions vary with the level of the Leibniz hierarchy at which they are presented. As a case study of the resulting theory, the nonalgebraizable fragments of relevance logic are considered.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Structural completeness of Gödel's and Dummett's propositional calculi.Wojciech Dzik & Andrzej Wroński - 1973 - Studia Logica 32 (1):69-73.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The Kuznetsov-Gerčiu and Rieger-Nishimura logics.Guram Bezhanishvili, Nick Bezhanishvili & Dick de Jongh - 2008 - Logic and Logical Philosophy 17 (1-2):73-110.
    We give a systematic method of constructing extensions of the Kuznetsov-Gerčiu logic KG without the finite model property (fmp for short), and show that there are continuum many such. We also introduce a new technique of gluing of cyclic intuitionistic descriptive frames and give a new simple proof of Gerčiu’s result [9, 8] that all extensions of the Rieger-Nishimura logic RN have the fmp. Moreover, we show that each extension of RN has the poly-size model property, thus improving on [9]. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the admissible rules of intuitionistic propositional logic.Rosalie Iemhoff - 2001 - Journal of Symbolic Logic 66 (1):281-294.
    We present a basis for the admissible rules of intuitionistic propositional logic. Thereby a conjecture by de Jongh and Visser is proved. We also present a proof system for the admissible rules, and give semantic criteria for admissibility.
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Finitely generated free Heyting algebras.Fabio Bellissima - 1986 - Journal of Symbolic Logic 51 (1):152-165.
    The aim of this paper is to give, using the Kripke semantics for intuitionism, a representation of finitely generated free Heyting algebras. By means of the representation we determine in a constructive way some set of "special elements" of such algebras. Furthermore, we show that many algebraic properties which are satisfied by the free algebra on one generator are not satisfied by free algebras on more than one generator.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Hereditarily structurally complete positive logics.Alex Citkin - 2020 - Review of Symbolic Logic 13 (3):483-502.
    Positive logics are $\{ \wedge, \vee, \to \}$-fragments of intermediate logics. It is clear that the positive fragment of $Int$ is not structurally complete. We give a description of all hereditarily structurally complete positive logics, while the question whether there is a structurally complete positive logic which is not hereditarily structurally complete, remains open.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Prefinitely axiomatizable modal and intermediate logics.Marcus Kracht - 1993 - Mathematical Logic Quarterly 39 (1):301-322.
    A logic Λ bounds a property P if all proper extensions of Λ have P while Λ itself does not. We construct logics bounding finite axiomatizability and logics bounding finite model property in the lattice of intermediate logics and in the lattice of normal extensions of K4.3. MSC: 03B45, 03B55.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Unification in intuitionistic logic.Silvio Ghilardi - 1999 - Journal of Symbolic Logic 64 (2):859-880.
    We show that the variety of Heyting algebras has finitary unification type. We also show that the subvariety obtained by adding it De Morgan law is the biggest variety of Heyting algebras having unitary unification type. Proofs make essential use of suitable characterizations (both from the semantic and the syntactic side) of finitely presented projective algebras.
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Varieties of positive modal algebras and structural completeness.Tommaso Moraschini - 2019 - Review of Symbolic Logic 12 (3):557-588.
    Positive modal algebras are the$$\left\langle { \wedge, \vee,\diamondsuit,\square,0,1} \right\rangle $$-subreducts of modal algebras. We prove that the variety of positive S4-algebras is not locally finite. On the other hand, the free one-generated positive S4-algebra is shown to be finite. Moreover, we describe the bottom part of the lattice of varieties of positive S4-algebras. Building on this, we characterize structurally complete varieties of positive K4-algebras.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Heyting Algebras: Duality Theory.Leo Esakia - 2019 - Cham, Switzerland: Springer Verlag.
    This book presents an English translation of a classic Russian text on duality theory for Heyting algebras. Written by Georgian mathematician Leo Esakia, the text proved popular among Russian-speaking logicians. This translation helps make the ideas accessible to a wider audience and pays tribute to an influential mind in mathematical logic. The book discusses the theory of Heyting algebras and closure algebras, as well as the corresponding intuitionistic and modal logics. The author introduces the key notion of a hybrid that (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Modal Logics Between S 4 and S 5.M. A. E. Dummett & E. J. Lemmon - 1959 - Mathematical Logic Quarterly 5 (14-24):250-264.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Independent bases of admissible rules.Emil Jerábek - 2008 - Logic Journal of the IGPL 16 (3):249-267.
    We show that IPC, K4, GL, and S4, as well as all logics inheriting their admissible rules, have independent bases of admissible rules.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • On Bellissima’s construction of the finitely generated free Heyting algebras, and beyond.Luck Darnière & Markus Junker - 2010 - Archive for Mathematical Logic 49 (7-8):743-771.
    We study finitely generated free Heyting algebras from a topological and from a model theoretic point of view. We review Bellissima’s representation of the finitely generated free Heyting algebra; we prove that it yields an embedding in the profinite completion, which is also the completion with respect to a naturally defined metric. We give an algebraic interpretation of the Kripke model used by Bellissima as the principal ideal spectrum and show it to be first order interpretable in the Heyting algebra, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Almost structural completeness; an algebraic approach.Wojciech Dzik & Michał M. Stronkowski - 2016 - Annals of Pure and Applied Logic 167 (7):525-556.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Intermediate Logics and Visser's Rules.Rosalie Iemhoff - 2005 - Notre Dame Journal of Formal Logic 46 (1):65-81.
    Visser's rules form a basis for the admissible rules of . Here we show that this result can be generalized to arbitrary intermediate logics: Visser's rules form a basis for the admissible rules of any intermediate logic for which they are admissible. This implies that if Visser's rules are derivable for then has no nonderivable admissible rules. We also provide a necessary and sufficient condition for the admissibility of Visser's rules. We apply these results to some specific intermediate logics and (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • On the rules of intermediate logics.Rosalie Iemhoff - 2006 - Archive for Mathematical Logic 45 (5):581-599.
    If the Visser rules are admissible for an intermediate logic, they form a basis for the admissible rules of the logic. How to characterize the admissible rules of intermediate logics for which not all of the Visser rules are admissible is not known. In this paper we give a brief overview of results on admissible rules in the context of intermediate logics. We apply these results to some well-known intermediate logics. We provide natural examples of logics for which the Visser (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • An algebraic approach to subframe logics. Intuitionistic case.Guram Bezhanishvili & Silvio Ghilardi - 2007 - Annals of Pure and Applied Logic 147 (1):84-100.
    We develop duality between nuclei on Heyting algebras and certain binary relations on Heyting spaces. We show that these binary relations are in 1–1 correspondence with subframes of Heyting spaces. We introduce the notions of nuclear and dense nuclear varieties of Heyting algebras, and prove that a variety of Heyting algebras is nuclear iff it is a subframe variety, and that it is dense nuclear iff it is a cofinal subframe variety. We give an alternative proof that every subframe variety (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Hereditarily structurally complete modal logics.V. V. Rybakov - 1995 - Journal of Symbolic Logic 60 (1):266-288.
    We consider structural completeness in modal logics. The main result is the necessary and sufficient condition for modal logics over K4 to be hereditarily structurally complete: a modal logic λ is hereditarily structurally complete $\operatorname{iff} \lambda$ is not included in any logic from the list of twenty special tabular logics. Hence there are exactly twenty maximal structurally incomplete modal logics above K4 and they are all tabular.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Epimorphism surjectivity in varieties of Heyting algebras.T. Moraschini & J. J. Wannenburg - 2020 - Annals of Pure and Applied Logic 171 (9):102824.
    It was shown recently that epimorphisms need not be surjective in a variety K of Heyting algebras, but only one counter-example was exhibited in the literature until now. Here, a continuum of such examples is identified, viz. the variety generated by the Rieger-Nishimura lattice, and all of its (locally finite) subvarieties that contain the original counter-example K . It is known that, whenever a variety of Heyting algebras has finite depth, then it has surjective epimorphisms. In contrast, we show that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Stable Formulas in Intuitionistic Logic.Nick Bezhanishvili & Dick de Jongh - 2018 - Notre Dame Journal of Formal Logic 59 (3):307-324.
    In 1995 Visser, van Benthem, de Jongh, and Renardel de Lavalette introduced NNIL-formulas, showing that these are exactly the formulas preserved under taking submodels of Kripke models. In this article we show that NNIL-formulas are up to frame equivalence the formulas preserved under taking subframes of frames, that NNIL-formulas are subframe formulas, and that subframe logics can be axiomatized by NNIL-formulas. We also define a new syntactic class of ONNILLI-formulas. We show that these are the formulas preserved in monotonic images (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations