Switch to: Citations

Add references

You must login to add references.
  1. Logical Indefinites.Jack Woods - 2014 - Logique Et Analyse -- Special Issue Edited by Julien Murzi and Massimiliano Carrara 227: 277-307.
    I argue that we can and should extend Tarski's model-theoretic criterion of logicality to cover indefinite expressions like Hilbert's ɛ operator, Russell's indefinite description operator η, and abstraction operators like 'the number of'. I draw on this extension to discuss the logical status of both abstraction operators and abstraction principles.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Mathematics as a science of patterns.Michael David Resnik - 1997 - New York ;: Oxford University Press.
    This book expounds a system of ideas about the nature of mathematics which Michael Resnik has been elaborating for a number of years. In calling mathematics a science he implies that it has a factual subject-matter and that mathematical knowledge is on a par with other scientific knowledge; in calling it a science of patterns he expresses his commitment to a structuralist philosophy of mathematics. He links this to a defense of realism about the metaphysics of mathematics--the view that mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark   244 citations  
  • Reasoning with arbitrary objects.Kit Fine - 1985 - New York, NY, USA: Blackwell.
    Contents: Preface VII; Introduction 1; 1. The General Framework 5; 2. Some Standard Systems 61; 3. Systems in General 147; 4. Non-Standard Systems 177; Bibliography 210; General Index 215; Index of Symbols 219-220.
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • Bad company tamed.Øystein Linnebo - 2009 - Synthese 170 (3):371 - 391.
    The neo-Fregean project of basing mathematics on abstraction principles faces “the bad company problem,” namely that a great variety of unacceptable abstraction principles are mixed in among the acceptable ones. In this paper I propose a new solution to the problem, based on the idea that individuation must take the form of a well-founded process. A surprising aspect of this solution is that every form of abstraction on concepts is permissible and that paradox is instead avoided by restricting what concepts (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Logicism and the ontological commitments of arithmetic.Harold T. Hodes - 1984 - Journal of Philosophy 81 (3):123-149.
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  • Three varieties of mathematical structuralism.Geoffrey Hellman - 2001 - Philosophia Mathematica 9 (2):184-211.
    Three principal varieties of mathematical structuralism are compared: set-theoretic structuralism (‘STS’) using model theory, Shapiro's ante rem structuralism invoking sui generis universals (‘SGS’), and the author's modal-structuralism (‘MS’) invoking logical possibility. Several problems affecting STS are discussed concerning, e.g., multiplicity of universes. SGS overcomes these; but it faces further problems of its own, concerning, e.g., the very intelligibility of purely structural objects and relations. MS, in contrast, overcomes or avoids both sets of problems. Finally, it is argued that the modality (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Naming and Necessity: Lectures Given to the Princeton University Philosophy Colloquium.Saul A. Kripke - 1980 - Cambridge, MA: Harvard University Press. Edited by Darragh Byrne & Max Kölbel.
    A transcript of three lectures, given at Princeton University in 1970, which deals with (inter alia) debates concerning proper names in the philosophy of language.
    Download  
     
    Export citation  
     
    Bookmark   1527 citations  
  • (4 other versions)Naming and Necessity.Saul Kripke - 2003 - In John Heil (ed.), Philosophy of Mind: A Guide and Anthology. New York: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   1003 citations  
  • Thin Objects: An Abstractionist Account.Øystein Linnebo - 2018 - Oxford: Oxford University Press.
    Are there objects that are “thin” in the sense that their existence does not make a substantial demand on the world? Frege famously thought so. He claimed that the equinumerosity of the knives and the forks suffices for there to be objects such as the number of knives and the number of forks, and for these objects to be identical. The idea of thin objects holds great philosophical promise but has proved hard to explicate. This book attempts to develop the (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • (4 other versions)Naming and Necessity.Saul Kripke - 1980 - Philosophy 56 (217):431-433.
    Download  
     
    Export citation  
     
    Bookmark   1788 citations  
  • (1 other version)Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 2000 - Philosophical Quarterly 50 (198):120-123.
    Download  
     
    Export citation  
     
    Bookmark   255 citations  
  • (4 other versions)Naming and Necessity.Saul Kripke - 1980 - Critica 17 (49):69-71.
    Download  
     
    Export citation  
     
    Bookmark   1992 citations  
  • In Good Company? On Hume’s Principle and the Assignment of Numbers to Infinite Concepts.Paolo Mancosu - 2015 - Review of Symbolic Logic 8 (2):370-410.
    In a recent article, I have explored the historical, mathematical, and philosophical issues related to the new theory of numerosities. The theory of numerosities provides a context in which to assign numerosities to infinite sets of natural numbers in such a way as to preserve the part-whole principle, namely if a set A is properly included in B then the numerosity of A is strictly less than the numerosity of B. Numerosities assignments differ from the standard assignment of size provided (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Arbitrary reference.Wylie Breckenridge & Ofra Magidor - 2012 - Philosophical Studies 158 (3):377-400.
    Two fundamental rules of reasoning are Universal Generalisation and Existential Instantiation. Applications of these rules involve stipulations such as ‘Let n be an arbitrary number’ or ‘Let John be an arbitrary Frenchman’. Yet the semantics underlying such stipulations are far from clear. What, for example, does ‘n’ refer to following the stipulation that n be an arbitrary number? In this paper, we argue that ‘n’ refers to a number—an ordinary, particular number such as 58 or 2,345,043. Which one? We do (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • The Identity Problem for Realist Structuralism.J. Keranen - 2001 - Philosophia Mathematica 9 (3):308--330.
    According to realist structuralism, mathematical objects are places in abstract structures. We argue that in spite of its many attractions, realist structuralism must be rejected. For, first, mathematical structures typically contain intra-structurally indiscernible places. Second, any account of place-identity available to the realist structuralist entails that intra-structurally indiscernible places are identical. Since for her mathematical singular terms denote places in structures, she would have to say, for example, that 1 = − 1 in the group (Z, +). We call this (...)
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • Frege's conception of numbers as objects.Crispin Wright - 1983 - [Aberdeen]: Aberdeen University Press.
    Download  
     
    Export citation  
     
    Bookmark   244 citations  
  • Identity, indiscernibility, and Ante Rem structuralism: The tale of I and –I.Stewart Shapiro - 2008 - Philosophia Mathematica 16 (3):285-309.
    Some authors have claimed that ante rem structuralism has problems with structures that have indiscernible places. In response, I argue that there is no requirement that mathematical objects be individuated in a non-trivial way. Metaphysical principles and intuitions to the contrary do not stand up to ordinary mathematical practice, which presupposes an identity relation that, in a sense, cannot be defined. In complex analysis, the two square roots of –1 are indiscernible: anything true of one of them is true of (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Logical operations.Vann McGee - 1996 - Journal of Philosophical Logic 25 (6):567 - 580.
    Tarski and Mautner proposed to characterize the "logical" operations on a given domain as those invariant under arbitrary permutations. These operations are the ones that can be obtained as combinations of the operations on the following list: identity; substitution of variables; negation; finite or infinite disjunction; and existential quantification with respect to a finite or infinite block of variables. Inasmuch as every operation on this list is intuitively "logical", this lends support to the Tarski-Mautner proposal.
    Download  
     
    Export citation  
     
    Bookmark   84 citations  
  • What numbers could not be.Paul Benacerraf - 1965 - Philosophical Review 74 (1):47-73.
    Download  
     
    Export citation  
     
    Bookmark   590 citations  
  • The semantic plights of the ante-rem structuralist.Bahram Assadian - 2018 - Philosophical Studies 175 (12):1-20.
    A version of the permutation argument in the philosophy of mathematics leads to the thesis that mathematical terms, contrary to appearances, are not genuine singular terms referring to individual objects; they are purely schematic or variables. By postulating ‘ante-rem structures’, the ante-rem structuralist aims to defuse the permutation argument and retain the referentiality of mathematical terms. This paper presents two semantic problems for the ante- rem view: (1) ante-rem structures are themselves subject to the permutation argument; (2) the ante-rem structuralist (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Reasoning with Arbitrary Objects.Kit Fine - 1985 - Revue Philosophique de la France Et de l'Etranger 176 (3):402-403.
    Download  
     
    Export citation  
     
    Bookmark   83 citations  
  • Frege's Conception of Numbers as Objects. [REVIEW]John P. Burgess - 1984 - Philosophical Review 93 (4):638-640.
    Download  
     
    Export citation  
     
    Bookmark   83 citations  
  • Abstraction and Four Kinds of Invariance.Roy T. Cook - 2017 - Philosophia Mathematica 25 (1):3–25.
    Fine and Antonelli introduce two generalizations of permutation invariance — internal invariance and simple/double invariance respectively. After sketching reasons why a solution to the Bad Company problem might require that abstraction principles be invariant in one or both senses, I identify the most fine-grained abstraction principle that is invariant in each sense. Hume’s Principle is the most fine-grained abstraction principle invariant in both senses. I conclude by suggesting that this partially explains the success of Hume’s Principle, and the comparative lack (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Grundlagen der Arithmetik: Studienausgabe mit dem Text der Centenarausgabe.Gottlob Frege - 1884 - Breslau: Wilhelm Koebner Verlag.
    Die Grundlagen gehören zu den klassischen Texten der Sprachphilosophie, Logik und Mathematik. Frege stützt sein Programm einer Begründung von Arithmetik und Analysis auf reine Logik, indem er die natürlichen Zahlen als bestimmte Begriffsumfänge definiert. Die philosophische Fundierung des Fregeschen Ansatzes bilden erkenntnistheoretische und sprachphilosophische Analysen und Begriffserklärungen. Studienausgabe aufgrund der textkritisch herausgegebenen Jubiläumsausgabe (Centenarausgabe). Mit Einleitung, Anmerkungen, Literaturverzeichnis und Namenregister.
    Download  
     
    Export citation  
     
    Bookmark   309 citations  
  • (1 other version)Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 2002 - Philosophy and Phenomenological Research 65 (2):467-475.
    Download  
     
    Export citation  
     
    Bookmark   236 citations  
  • Crispin Wright, Frege's Conception of Numbers as Objects. [REVIEW]Boguslaw Wolniewicz - 1986 - Studia Logica 45 (3):330-330.
    The book is an attempt at explaining to the nation the ideas of Frege's Grundlagen. It is wordy and trite, a paradigm case of a redundant piece of writing. The reader is advised to steer clear of it.
    Download  
     
    Export citation  
     
    Bookmark   177 citations  
  • The Significance of Complex Numbers for Frege's Philosophy of Mathematics.Robert Brandom - 1996 - Proceedings of the Aristotelian Society 96 (1):293 - 315.
    Robert Brandom; XII*—The Significance of Complex Numbers for Frege's Philosophy of Mathematics1, Proceedings of the Aristotelian Society, Volume 96, Issue 1, 1.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Individuation.Edward Jonathan Lowe - 2003 - In Michael J. Loux & Dean W. Zimmerman (eds.), The Oxford handbook of metaphysics. New York: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Platonism and aristotelianism in mathematics.Richard Pettigrew - 2008 - Philosophia Mathematica 16 (3):310-332.
    Philosophers of mathematics agree that the only interpretation of arithmetic that takes that discourse at 'face value' is one on which the expressions 'N', '0', '1', '+', and 'x' are treated as proper names. I argue that the interpretation on which these expressions are treated as akin to free variables has an equal claim to be the default interpretation of arithmetic. I show that no purely syntactic test can distinguish proper names from free variables, and I observe that any semantic (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • (1 other version)Arbitrary reference in mathematical reasoning.Enrico Martino - 2001 - Topoi 20 (1):65-77.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)Mathematics without Numbers. Towards a Modal-Structural Interpretation.Geoffrey Hellman - 1991 - Tijdschrift Voor Filosofie 53 (4):726-727.
    Download  
     
    Export citation  
     
    Bookmark   110 citations  
  • Mathematics as a Science of Patterns.Michael D. Resnik & Stewart Shapiro - 1998 - British Journal for the Philosophy of Science 49 (4):652-656.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Frege’s Conception of Numbers as Objects.Crispin Wright - 1983 - Critical Philosophy 1 (1):97.
    Download  
     
    Export citation  
     
    Bookmark   343 citations  
  • (4 other versions)Naming and Necessity.S. Kripke - 1972 - Tijdschrift Voor Filosofie 45 (4):665-666.
    Download  
     
    Export citation  
     
    Bookmark   2750 citations  
  • Plural Logicism.Francesca Boccuni - 2013 - Erkenntnis 78 (5):1051-1067.
    PG (Plural Grundgesetze) is a consistent second-order system which is aimed to derive second-order Peano arithmetic. It employs the notion of plural quantification and a few Fregean devices, among which the infamous Basic Law V. George Boolos’ plural semantics is replaced with Enrico Martino’s Acts of Choice Semantics (ACS), which is developed from the notion of arbitrary reference in mathematical reasoning. Also, substitutional quantification is exploited to interpret quantification into predicate position. ACS provides a form of logicism which is radically (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Notions of Invariance for Abstraction Principles.G. A. Antonelli - 2010 - Philosophia Mathematica 18 (3):276-292.
    The logical status of abstraction principles, and especially Hume’s Principle, has been long debated, but the best currently availeble tool for explicating a notion’s logical character—permutation invariance—has not received a lot of attention in this debate. This paper aims to fill this gap. After characterizing abstraction principles as particular mappings from the subsets of a domain into that domain and exploring some of their properties, the paper introduces several distinct notions of permutation invariance for such principles, assessing the philosophical significance (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • (1 other version)Is Hume's principle analytic?G. Boolos - 1998 - Logic, Logic, and Logic:301--314.
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Cantorian Abstraction.Kit Fine - 1998 - Journal of Philosophy 95 (12):599-634.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Reasoning with Arbitrary Objects.John Macnamara - 1988 - Journal of Symbolic Logic 53 (1):305.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • An “I” for an I: Singular terms, uniqueness, and reference.Stewart Shapiro - 2012 - Review of Symbolic Logic 5 (3):380-415.
    There is an interesting logical/semantic issue with some mathematical languages and theories. In the language of (pure) complex analysis, the two square roots of i’ manage to pick out a unique object? This is perhaps the most prominent example of the phenomenon, but there are some others. The issue is related to matters concerning the use of definite descriptions and singular pronouns, such as donkey anaphora and the problem of indistinguishable participants. Taking a cue from some work in linguistics and (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Mathematics as a science of patterns. [REVIEW]Mark Steiner - 2000 - Philosophical Review 109 (1):115-118.
    For the past hundred years, mathematics, for its own reasons, has been shifting away from the study of “mathematical objects” and towards the study of “structures”. One would have expected philosophers to jump onto the bandwagon, as in many other cases, to proclaim that this shift is no accident, since mathematics is “essentially” about structures, not objects. In fact, structuralism has not been a very popular philosophy of mathematics, probably because of the hostility of Frege and other influential logicists, and (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • (2 other versions)The Limits of Abstraction.Kit Fine - 2005 - Philosophical Studies 122 (3):367-395.
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • Logicism and Neologicism.Neil Tennant - 2013 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (2 other versions)The Limits of Abstraction.Kit Fine - 2004 - Bulletin of Symbolic Logic 10 (4):554-557.
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • (1 other version)Mathematics without Numbers: Towards a Modal-Structural Interpretation.Bob Hale & Geoffrey Hellman - 1992 - Philosophical Review 101 (4):919.
    Download  
     
    Export citation  
     
    Bookmark   97 citations  
  • A Structural Account of Mathematics.Charles Chihara - 2005 - Bulletin of Symbolic Logic 11 (1):79-83.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • (2 other versions)Review of Crispin Wright: Frege's conception of numbers as objects[REVIEW]Gregory Currie - 1985 - British Journal for the Philosophy of Science 36 (4):475-479.
    Download  
     
    Export citation  
     
    Bookmark   72 citations