Switch to: References

Add citations

You must login to add citations.
  1. Restricted nominalism about number and its problems.Stewart Shapiro, Richard Samuels & Eric Snyder - 2024 - Synthese 203 (5):1-23.
    Hofweber (Ontology and the ambitions of metaphysics, Oxford University Press, 2016) argues for a thesis he calls “internalism” with respect to natural number discourse: no expressions purporting to refer to natural numbers in fact refer, and no apparent quantification over natural numbers actually involves quantification over natural numbers as objects. He argues that while internalism leaves open the question of whether other kinds of abstracta exist, it precludes the existence of natural numbers, thus establishing what he calls “restricted nominalism” about (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Stochastic Model of Mathematics and Science.David H. Wolpert & David B. Kinney - 2024 - Foundations of Physics 54 (2):1-67.
    We introduce a framework that can be used to model both mathematics and human reasoning about mathematics. This framework involves stochastic mathematical systems (SMSs), which are stochastic processes that generate pairs of questions and associated answers (with no explicit referents). We use the SMS framework to define normative conditions for mathematical reasoning, by defining a “calibration” relation between a pair of SMSs. The first SMS is the human reasoner, and the second is an “oracle” SMS that can be interpreted as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The psychopathology of metaphysics.Billon Alexandre - 2024 - Metaphilosophy 1 (01):1-28.
    According to a common philosophical intuition, the deep nature of things is hidden from us, and the world as we know it through perception and science is somehow shallow and lacking in reality. For all we knwo, the intuition goes, we could be living in a cave facing shadows, in a dream or even in a computer simulation, This “intuition of unreality” clashes with a strong, but perhaps more naive, intuition to the effect that the world as we know it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Observation and Intuition.Justin Clarke-Doane & Avner Ash - 2023 - In Carolin Antos, Neil Barton & Giorgio Venturi (eds.), The Palgrave Companion to the Philosophy of Set Theory. Palgrave.
    The motivating question of this paper is: ‘How are our beliefs in the theorems of mathematics justified?’ This is distinguished from the question ‘How are our mathematical beliefs reliably true?’ We examine an influential answer, outlined by Russell, championed by Gödel, and developed by those searching for new axioms to settle undecidables, that our mathematical beliefs are justified by ‘intuitions’, as our scientific beliefs are justified by observations. On this view, axioms are analogous to laws of nature. They are postulated (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The iterative conception of function and the iterative conception of set.Tim Button - 2023 - In Carolin Antos, Neil Barton & Giorgio Venturi (eds.), The Palgrave Companion to the Philosophy of Set Theory. Palgrave.
    Hilary Putnam once suggested that “the actual existence of sets as ‘intangible objects’ suffers… from a generalization of a problem first pointed out by Paul Benacerraf… are sets a kind of function or are functions a sort of set?” Sadly, he did not elaborate; my aim, here, is to do so on his behalf. There are well-known methods for treating sets as functions and functions as sets. But these do not raise any obvious philosophical or foundational puzzles. For that, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Caesar Problem — A Piecemeal Solution.J. P. Studd - 2023 - Philosophia Mathematica 31 (2):236-267.
    The Caesar problem arises for abstractionist views, which seek to secure reference for terms such as ‘the number of Xs’ or #X by stipulating the content of ‘unmixed’ identity contexts like ‘#X = #Y’. Frege objects that this stipulation says nothing about ‘mixed’ contexts such as ‘# X = Julius Caesar’. This article defends a neglected response to the Caesar problem: the content of mixed contexts is just as open to stipulation as that of unmixed contexts.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Pluralism.Edward N. Zalta - 2024 - Noûs 58 (2):306-332.
    Mathematical pluralism can take one of three forms: (1) every consistent mathematical theory consists of truths about its own domain of individuals and relations; (2) every mathematical theory, consistent or inconsistent, consists of truths about its own (possibly uninteresting) domain of individuals and relations; and (3) the principal philosophies of mathematics are each based upon an insight or truth about the nature of mathematics that can be validated. (1) includes the multiverse approach to set theory. (2) helps us to understand (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • From Maximal Intersubjectivity to Objectivity: An Argument from the Development of Arithmetical Cognition.Markus Pantsar - 2022 - Topoi 42 (1):271-281.
    One main challenge of non-platonist philosophy of mathematics is to account for the apparent objectivity of mathematical knowledge. Cole and Feferman have proposed accounts that aim to explain objectivity through the intersubjectivity of mathematical knowledge. In this paper, focusing on arithmetic, I will argue that these accounts as such cannot explain the apparent objectivity of mathematical knowledge. However, with support from recent progress in the empirical study of the development of arithmetical cognition, a stronger argument can be provided. I will (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Conceptual Structuralism.José Ferreirós - 2023 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 54 (1):125-148.
    This paper defends a conceptualistic version of structuralism as the most convincing way of elaborating a philosophical understanding of structuralism in line with the classical tradition. The argument begins with a revision of the tradition of “conceptual mathematics”, incarnated in key figures of the period 1850 to 1940 like Riemann, Dedekind, Hilbert or Noether, showing how it led to a structuralist methodology. Then the tension between the ‘presuppositionless’ approach of those authors, and the platonism of some recent versions of philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Essence, Triviality, and Fundamentality.Ashley Coates - 2022 - Canadian Journal of Philosophy 52 (5):502-516.
    I defend a new account of constitutive essence on which an entity’s constitutively essential properties are its most fundamental, nontrivial necessary properties. I argue that this account accommodates the Finean counterexamples to classic modalism about essence, provides an independently plausible account of constitutive essence, and does not run into clear counterexamples. I conclude that this theory provides a promising way forward for attempts to produce an adequate nonprimitivist, modalist account of essence. As both triviality and fundamentality in the account are (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Systemic and Structural Injustice: Is There a Difference?Sally Haslanger - 2023 - Philosophy 98 (1):1-27.
    The terms ‘structural injustice’ and ‘systemic injustice’ are commonly used, but their meanings are elusive. In this paper, I sketch an ontology of social systems that embeds accounts of social structures, relations, and practices. On this view, structures may be intrinsically problematic, or they may be problematic only insofar as they interact with other structures in the system to produce injustice. Because social practices that constitute structures set the backdrop for agency and identity, socially fluent agents reproduce the systems, often (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Structure and applied mathematics.Travis McKenna - 2022 - Synthese 200 (5):1-31.
    ‘Mapping accounts’ of applied mathematics hold that the application of mathematics in physical science is best understood in terms of ‘mappings’ between mathematical structures and physical structures. In this paper, I suggest that mapping accounts rely on the assumption that the mathematics relevant to any application of mathematics in empirical science can be captured in an appropriate mathematical structure. If we are interested in assessing the plausibility of mapping accounts, we must ask ourselves: how plausible is this assumption as a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Husserl’s Transcendentalization of Mathematical Naturalism.Mirja Hartimo - 2020 - Journal of Transcendental Philosophy 1 (3):289-306.
    The paper aims to capture a form of naturalism that can be found “built-in” in phenomenology, namely the idea to take science or mathematics on its own, without postulating extraneous normative “molds” on it. The paper offers a detailed comparison of Penelope Maddy’s naturalism about mathematics and Husserl’s approach to mathematics in Formal and Transcendental Logic. It argues that Maddy’s naturalized methodology is similar to the approach in the first part of the book. However, in the second part Husserl enters (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Collective Abstraction.Jon Erling Litland - 2022 - Philosophical Review 131 (4):453-497.
    This paper develops a novel theory of abstraction—what we call collective abstraction. The theory solves a notorious problem for noneliminative structuralism. The noneliminative structuralist holds that in addition to various isomorphic systems there is a pure structure that can be abstracted from each of these systems; but existing accounts of abstraction fail for nonrigid systems like the complex numbers. The problem with the existing accounts is that they attempt to define a unique abstraction operation. The theory of collective abstraction instead (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Building blocks for a cognitive science-led epistemology of arithmetic.Stefan Buijsman - 2021 - Philosophical Studies 179 (5):1-18.
    In recent years philosophers have used results from cognitive science to formulate epistemologies of arithmetic :5–18, 2001). Such epistemologies have, however, been criticised, e.g. by Azzouni, for interpreting the capacities found by cognitive science in an overly numerical way. I offer an alternative framework for the way these psychological processes can be combined, forming the basis for an epistemology for arithmetic. The resulting framework avoids assigning numerical content to the Approximate Number System and Object Tracking System, two systems that have (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Price of Mathematical Scepticism.Paul Blain Levy - 2022 - Philosophia Mathematica 30 (3):283-305.
    This paper argues that, insofar as we doubt the bivalence of the Continuum Hypothesis or the truth of the Axiom of Choice, we should also doubt the consistency of third-order arithmetic, both the classical and intuitionistic versions. -/- Underlying this argument is the following philosophical view. Mathematical belief springs from certain intuitions, each of which can be either accepted or doubted in its entirety, but not half-accepted. Therefore, our beliefs about reality, bivalence, choice and consistency should all be aligned.
    Download  
     
    Export citation  
     
    Bookmark  
  • The structuralist approach to underdetermination.Chanwoo Lee - 2022 - Synthese 200 (2):1-25.
    This paper provides an exposition of the structuralist approach to underdetermination, which aims to resolve the underdetermination of theories by identifying their common theoretical structure. Applications of the structuralist approach can be found in many areas of philosophy. I present a schema of the structuralist approach, which conceptually unifies such applications in different subject matters. It is argued that two classic arguments in the literature, Paul Benacerraf’s argument on natural numbers and W. V. O. Quine’s argument for the indeterminacy of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Introduction to Knowledge, Number and Reality. Encounters with the Work of Keith Hossack.Nils Kürbis, Jonathan Nassim & Bahram Assadian - 2022 - In Nils Kürbis, Bahram Assadian & Jonathan Nassim (eds.), Knowledge, Number and Reality: Encounters with the Work of Keith Hossack. London: Bloomsbury. pp. 1-30.
    The Introduction to "Knowledge, Number and Reality. Encounters with the Work of Keith Hossack" provides an overview over Hossack's work and the contributions to the volume.
    Download  
     
    Export citation  
     
    Bookmark  
  • Asymmetry cannot solve the circularity/regress problem of property structuralism.Ralf Busse - 2021 - Synthese 199 (3-4):10685-10720.
    Strong dispositional monism, the position that all fundamental physical properties consist in dispositional relations to other properties, is naturally construed as property structuralism. J. Lowe’s circularity/regress objection constitutes a serious challenge to SDM that questions the possibility of a purely relational determination of all property essences. The supervenience thesis of A. Bird’s graph-theoretic asymmetry reply to CRO can be rigorously proved. Yet the reply fails metaphysically, because it reveals neither a metaphysical determination of identities on a purely relational basis nor (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Reasons explanations (of actions) as structural explanations.Megan Fritts - 2021 - Synthese 199 (5-6):12683-12704.
    Non-causal accounts of action explanation have long been criticized for lacking a positive thesis, relying primarily on negative arguments to undercut the standard Causal Theory of Action The Stanford Encyclopedia of Philosophy, 2016). Additionally, it is commonly thought that non-causal accounts fail to provide an answer to Donald Davidson’s challenge for theories of reasons explanations of actions. According to Davidson’s challenge, a plausible non-causal account of reasons explanations must provide a way of connecting an agent’s reasons, not only to what (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Cost of Closure: Logical Realism, Anti-Exceptionalism, and Theoretical Equivalence.Michaela M. McSweeney - 2021 - Synthese 199:12795–12817.
    Philosophers of science often assume that logically equivalent theories are theoretically equivalent. I argue that two theses, anti-exceptionalism about logic (which says, roughly, that logic is not a priori, that it is revisable, and that it is not special or set apart from other human inquiry) and logical realism (which says, roughly, that differences in logic reflect genuine metaphysical differences in the world), make trouble for both this commitment and the closely related commitment to theories being closed under logical consequence. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Platonic Relations and Mathematical Explanations.Robert Knowles - 2021 - Philosophical Quarterly 71 (3):623-644.
    Some scientific explanations appear to turn on pure mathematical claims. The enhanced indispensability argument appeals to these ‘mathematical explanations’ in support of mathematical platonism. I argue that the success of this argument rests on the claim that mathematical explanations locate pure mathematical facts on which their physical explananda depend, and that any account of mathematical explanation that supports this claim fails to provide an adequate understanding of mathematical explanation.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Objectivity in Mathematics, Without Mathematical Objects†.Markus Pantsar - 2021 - Philosophia Mathematica 29 (3):318-352.
    I identify two reasons for believing in the objectivity of mathematical knowledge: apparent objectivity and applications in science. Focusing on arithmetic, I analyze platonism and cognitive nativism in terms of explaining these two reasons. After establishing that both theories run into difficulties, I present an alternative epistemological account that combines the theoretical frameworks of enculturation and cumulative cultural evolution. I show that this account can explain why arithmetical knowledge appears to be objective and has scientific applications. Finally, I will argue (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Categoricity by convention.Julien Murzi & Brett Topey - 2021 - Philosophical Studies 178 (10):3391-3420.
    On a widespread naturalist view, the meanings of mathematical terms are determined, and can only be determined, by the way we use mathematical language—in particular, by the basic mathematical principles we’re disposed to accept. But it’s mysterious how this can be so, since, as is well known, minimally strong first-order theories are non-categorical and so are compatible with countless non-isomorphic interpretations. As for second-order theories: though they typically enjoy categoricity results—for instance, Dedekind’s categoricity theorem for second-order and Zermelo’s quasi-categoricity theorem (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Narrow Ontic Counterfactual Account of Distinctively Mathematical Explanation.Mark Povich - 2021 - British Journal for the Philosophy of Science 72 (2):511-543.
    An account of distinctively mathematical explanation (DME) should satisfy three desiderata: it should account for the modal import of some DMEs; it should distinguish uses of mathematics in explanation that are distinctively mathematical from those that are not (Baron [2016]); and it should also account for the directionality of DMEs (Craver and Povich [2017]). Baron’s (forthcoming) deductive-mathematical account, because it is modelled on the deductive-nomological account, is unlikely to satisfy these desiderata. I provide a counterfactual account of DME, the Narrow (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Modal Structuralism with Theoretical Terms.Holger Andreas & Georg Schiemer - 2021 - Erkenntnis 88 (2):721-745.
    In this paper, we aim to explore connections between a Carnapian semantics of theoretical terms and an eliminative structuralist approach in the philosophy of mathematics. Specifically, we will interpret the language of Peano arithmetic by applying the modal semantics of theoretical terms introduced in Andreas (Synthese 174(3):367–383, 2010). We will thereby show that the application to Peano arithmetic yields a formal semantics of universal structuralism, i.e., the view that ordinary mathematical statements in arithmetic express general claims about all admissible interpretations (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematics as a science of non-abstract reality: Aristotelian realist philosophies of mathematics.James Franklin - 2022 - Foundations of Science 27 (2):327-344.
    There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article lays out and compares these (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Why Can’t There Be Numbers?David Builes - forthcoming - The Philosophical Quarterly.
    Platonists affirm the existence of abstract mathematical objects, and Nominalists deny the existence of abstract mathematical objects. While there are standard arguments in favor of Nominalism, these arguments fail to account for the necessity of Nominalism. Furthermore, these arguments do nothing to explain why Nominalism is true. They only point to certain theoretical vices that might befall the Platonist. The goal of this paper is to formulate and defend a simple, valid argument for the necessity of Nominalism that seeks to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • XV—On Consistency and Existence in Mathematics.Walter Dean - 2021 - Proceedings of the Aristotelian Society 120 (3):349-393.
    This paper engages the question ‘Does the consistency of a set of axioms entail the existence of a model in which they are satisfied?’ within the frame of the Frege-Hilbert controversy. The question is related historically to the formulation, proof and reception of Gödel’s Completeness Theorem. Tools from mathematical logic are then used to argue that there are precise senses in which Frege was correct to maintain that demonstrating consistency is as difficult as it can be, but also in which (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Structural realism and generative linguistics.Ryan M. Nefdt - 2021 - Synthese 199 (1-2):3711-3737.
    Linguistics as a science has rapidly changed during the course of a relatively short period. The mathematical foundations of the science, however, present a different story below the surface. In this paper, I argue that due to the former, the seismic shifts in theory over the past 80 years opens linguistics up to the problem of pessimistic meta-induction or radical theory change. I further argue that, due to the latter, one current solution to this problem in the philosophy of science, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Does Dispositionalism Entail Panpsychism?Hedda Hassel Mørch - 2018 - Topoi 39 (5):1073-1088.
    According to recent arguments for panpsychism, all physical properties are dispositional, dispositions require categorical grounds, and the only categorical properties we know are phenomenal properties. Therefore, phenomenal properties can be posited as the categorical grounds of all physical properties—in order to solve the mind–body problem and/or in order avoid noumenalism about the grounds of the physical world. One challenge to this case comes from dispositionalism, which agrees that all physical properties are dispositional, but denies that dispositions require categorical grounds. In (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Descriptivism about the Reference of Set-Theoretic Expressions: Revisiting Putnam’s Model-Theoretic Arguments.Zeynep Soysal - 2020 - The Monist 103 (4):442-454.
    Putnam’s model-theoretic arguments for the indeterminacy of reference have been taken to pose a special problem for mathematical languages. In this paper, I argue that if one accepts that there are theory-external constraints on the reference of at least some expressions of ordinary language, then Putnam’s model-theoretic arguments for mathematical languages don’t go through. In particular, I argue for a kind of descriptivism about mathematical expressions according to which their reference is “anchored” in the reference of expressions of ordinary language. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The ineffability of God.Omar Fakhri - 2020 - International Journal for Philosophy of Religion 89 (1):25-41.
    I defend an account of God’s ineffability that depends on the distinction between fundamental and non-fundamental truths. I argue that although there are fundamentally true propositions about God, no creature can have them as the object of a propositional attitude, and no sentence can perfectly carve out their structures. Why? Because these propositions have non-enumerable structures. In principle, no creature can fully grasp God’s intrinsic nature, nor can they develop a language that fully describes it. On this account, the ineffability (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Structural Relativity and Informal Rigour.Neil Barton - 2022 - In Gianluigi Oliveri, Claudio Ternullo & Stefano Boscolo (eds.), Objects, Structures, and Logics, FilMat Studies in the Philosophy of Mathematics. Springer. pp. 133-174.
    Informal rigour is the process by which we come to understand particular mathematical structures and then manifest this rigour through axiomatisations. Structural relativity is the idea that the kinds of structures we isolate are dependent upon the logic we employ. We bring together these ideas by considering the level of informal rigour exhibited by our set-theoretic discourse, and argue that different foundational programmes should countenance different underlying logics (intermediate between first- and second-order) for formulating set theory. By bringing considerations of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Can we resolve the continuum hypothesis?Shivaram Lingamneni - 2020 - Synthese 197 (2):599-622.
    I argue that contemporary set theory, as depicted in the 2011–2012 EFI lecture series, lacks a program that promises to decide, in a genuinely realist fashion, the continuum hypothesis (CH) and related questions about the “width” of the universe. We can distinguish three possible objectives for a realist completion of set theory: maximizing structures, maximizing sets, and maximizing interpretive power. However, none of these is allied to a program that can plausibly decide CH. I discuss the implications of this for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The philosophy of linguistics: Scientific underpinnings and methodological disputes.Ryan M. Nefdt - 2019 - Philosophy Compass 14 (12):e12636.
    This article surveys the philosophical literature on theoretical linguistics. The focus of the paper is centred around the major debates in the philosophy of linguistics, past and present, with specific relation to how they connect to the philosophy of science. Specific issues such as scientific realism in linguistics, the scientific status of grammars, the methodological underpinnings of formal semantics, and the integration of linguistics into the larger cognitive sciences form the crux of the discussion.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What are Implicit Definitions?Eduardo N. Giovannini & Georg Schiemer - 2019 - Erkenntnis 86 (6):1661-1691.
    The paper surveys different notions of implicit definition. In particular, we offer an examination of a kind of definition commonly used in formal axiomatics, which in general terms is understood as providing a definition of the primitive terminology of an axiomatic theory. We argue that such “structural definitions” can be semantically understood in two different ways, namely as specifications of the meaning of the primitive terms of a theory and as definitions of higher-order mathematical concepts or structures. We analyze these (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Formal Semantics and Applied Mathematics: An Inferential Account.Ryan M. Nefdt - 2020 - Journal of Logic, Language and Information 29 (2):221-253.
    In this paper, I utilise the growing literature on scientific modelling to investigate the nature of formal semantics from the perspective of the philosophy of science. Specifically, I incorporate the inferential framework proposed by Bueno and Colyvan : 345–374, 2011) in the philosophy of applied mathematics to offer an account of how formal semantics explains and models its data. This view produces a picture of formal semantic models as involving an embedded process of inference and representation applying indirectly to linguistic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • In Defense of Benacerraf’s Multiple-Reductions Argument.Michele Ginammi - 2019 - Philosophia Mathematica 27 (2):276-288.
    I discuss Steinhart’s argument against Benacerraf’s famous multiple-reductions argument to the effect that numbers cannot be sets. Steinhart offers a mathematical argument according to which there is only one series of sets to which the natural numbers can be reduced, and thus attacks Benacerraf’s assumption that there are multiple reductions of numbers to sets. I will argue that Steinhart’s argument is problematic and should not be accepted.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Infinity and the foundations of linguistics.Ryan M. Nefdt - 2019 - Synthese 196 (5):1671-1711.
    The concept of linguistic infinity has had a central role to play in foundational debates within theoretical linguistics since its more formal inception in the mid-twentieth century. The conceptualist tradition, marshalled in by Chomsky and others, holds that infinity is a core explanandum and a link to the formal sciences. Realism/Platonism takes this further to argue that linguistics is in fact a formal science with an abstract ontology. In this paper, I argue that a central misconstrual of formal apparatus of (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Hale’s argument from transitive counting.Eric Snyder, Richard Samuels & Stewart Shapiro - 2019 - Synthese 198 (3):1905-1933.
    A core commitment of Bob Hale and Crispin Wright’s neologicism is their invocation of Frege’s Constraint—roughly, the requirement that the core empirical applications for a class of numbers be “built directly into” their formal characterization. According to these neologicists, if legitimate, Frege’s Constraint adjudicates in favor of their preferred foundation—Hume’s Principle—and against alternatives, such as the Dedekind–Peano axioms. In this paper, we consider a recent argument for legitimating Frege’s Constraint due to Hale, according to which the primary empirical application of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The ontology of words: a structural approach.Ryan M. Nefdt - 2019 - Inquiry: An Interdisciplinary Journal of Philosophy 62 (8):877-911.
    Words form a fundamental basis for our understanding of linguistic practice. However, the precise ontology of words has eluded many philosophers and linguists. A persistent difficulty for most accounts of words is the type-token distinction [Bromberger, S. 1989. “Types and Tokens in Linguistics.” In Reflections on Chomsky, edited by A. George, 58–90. Basil Blackwell; Kaplan, D. 1990. “Words.” Aristotelian Society Supplementary Volume LXIV: 93–119]. In this paper, I present a novel account of words which differs from the atomistic and platonistic (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Antireductionism and Ordinals.Beau Madison Mount - 2019 - Philosophia Mathematica 27 (1):105-124.
    I develop a novel argument against the claim that ordinals are sets. In contrast to Benacerraf’s antireductionist argument, I make no use of covert epistemic assumptions. Instead, my argument uses considerations of ontological dependence. I draw on the datum that sets depend immediately and asymmetrically on their elements and argue that this datum is incompatible with reductionism, given plausible assumptions about the dependence profile of ordinals. In addition, I show that a structurally similar argument can be made against the claim (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Viewing-as explanations and ontic dependence.William D’Alessandro - 2020 - Philosophical Studies 177 (3):769-792.
    According to a widespread view in metaphysics and philosophy of science, all explanations involve relations of ontic dependence between the items appearing in the explanandum and the items appearing in the explanans. I argue that a family of mathematical cases, which I call “viewing-as explanations”, are incompatible with the Dependence Thesis. These cases, I claim, feature genuine explanations that aren’t supported by ontic dependence relations. Hence the thesis isn’t true in general. The first part of the paper defends this claim (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Set-theoretic pluralism and the Benacerraf problem.Justin Clarke-Doane - 2020 - Philosophical Studies 177 (7):2013-2030.
    Set-theoretic pluralism is an increasingly influential position in the philosophy of set theory (Balaguer [1998], Linksy and Zalta [1995], Hamkins [2012]). There is considerable room for debate about how best to formulate set-theoretic pluralism, and even about whether the view is coherent. But there is widespread agreement as to what there is to recommend the view (given that it can be formulated coherently). Unlike set-theoretic universalism, set-theoretic pluralism affords an answer to Benacerraf’s epistemological challenge. The purpose of this paper is (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Reasoning about Arbitrary Natural Numbers from a Carnapian Perspective.Leon Horsten & Stanislav O. Speranski - 2019 - Journal of Philosophical Logic 48 (4):685-707.
    Inspired by Kit Fine’s theory of arbitrary objects, we explore some ways in which the generic structure of the natural numbers can be presented. Following a suggestion of Saul Kripke’s, we discuss how basic facts and questions about this generic structure can be expressed in the framework of Carnapian quantified modal logic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • William Lane Craig.*God and Abstract Objects – The Coherence of Theism : AseityWilliam Lane Craig. God Over All : Divine Aseity and the Challenge of Platonism.Simon Hewitt - 2018 - Philosophia Mathematica 26 (3):418-421.
    Download  
     
    Export citation  
     
    Bookmark  
  • Social Structures and the Ontology of Social Groups.Katherine Ritchie - 2018 - Philosophy and Phenomenological Research 100 (2):402-424.
    Social groups—like teams, committees, gender groups, and racial groups—play a central role in our lives and in philosophical inquiry. Here I develop and motivate a structuralist ontology of social groups centered on social structures (i.e., networks of relations that are constitutively dependent on social factors). The view delivers a picture that encompasses a diverse range of social groups, while maintaining important metaphysical and normative distinctions between groups of different kinds. It also meets the constraint that not every arbitrary collection of (...)
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Mathematical Knowledge, the Analytic Method, and Naturalism.Fabio Sterpetti - 2018 - In Sorin Bangu (ed.), Naturalizing Logico-Mathematical Knowledge: Approaches From Psychology and Cognitive Science. New York: Routledge. pp. 268-293.
    This chapter tries to answer the following question: How should we conceive of the method of mathematics, if we take a naturalist stance? The problem arises since mathematical knowledge is regarded as the paradigm of certain knowledge, because mathematics is based on the axiomatic method. Moreover, natural science is deeply mathematized, and science is crucial for any naturalist perspective. But mathematics seems to provide a counterexample both to methodological and ontological naturalism. To face this problem, some authors tried to naturalize (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hilary Putnam on the philosophy of logic and mathematics.José Miguel Sagüillo - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):183-200.
    I discuss Putnam’s conception of logical truth as grounded in his picture of mathematical practice and ontology. i begin by comparing Putnam’s 1971 Philosophy of Logic with Quine’s homonymous book. Next, Putnam’s changing views on modality are surveyed, moving from the modal pre-formal to the de-modalized formal characterization of logical validity. Section three suggests a complementary view of Platonism and modalism underlying different stages of a dynamic mathematical practice. The final section argues for the pervasive platonistic conception of the working (...)
    Download  
     
    Export citation  
     
    Bookmark