Switch to: References

Add citations

You must login to add citations.
  1. What is a (social) structural explanation?Sally Haslanger - 2016 - Philosophical Studies 173 (1):113-130.
    A philosophically useful account of social structure must accommodate the fact that social structures play an important role in structural explanation. But what is a structural explanation? How do structural explanations function in the social sciences? This paper offers a way of thinking about structural explanation and sketches an account of social structure that connects social structures with structural explanation.
    Download  
     
    Export citation  
     
    Bookmark   156 citations  
  • Placement, grounding, and mental content.Kelly Trogdon - 2015 - In Chris Daly (ed.), The Palgrave Handbook of Philosophical Methods. New York: Palgrave-Macmillan. pp. 481-496.
    Grounding-theoretic reformulation of Fodor's theory of content that addresses recalcitrant Quinean concerns.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Structuralism and Its Ontology.Marc Gasser - 2015 - Ergo: An Open Access Journal of Philosophy 2:1-26.
    A prominent version of mathematical structuralism holds that mathematical objects are at bottom nothing but "positions in structures," purely relational entities without any sort of nature independent of the structure to which they belong. Such an ontology is often presented as a response to Benacerraf's "multiple reductions" problem, or motivated on hermeneutic grounds, as a faithful representation of the discourse and practice of mathematics. In this paper I argue that there are serious difficulties with this kind of view: its proponents (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Semblance or similarity? Reflections on Simulation and Similarity: Michael Weisberg: Simulation and similarity: using models to understand the world. Oxford University Press, 2013. 224pp. ISBN 9780199933662, $65.00.Jay Odenbaugh - 2015 - Biology and Philosophy 30 (2):277-291.
    In this essay, I critically evaluate components of Michael Weisberg’s approach to models and modeling in his book Simulation and Similarity. First, I criticize his account of the ontology of models and mathematics. Second, I respond to his objections to fictionalism regarding models arguing that they fail. Third, I sketch a deflationary approach to models that retains many elements of his account but avoids the inflationary commitments.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Pluralism and “Bad” Mathematical Theories: Challenging our Prejudices.Michèle Friend - 2012 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Dordrecht, Netherland: Springer. pp. 277--307.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Naturalizing Badiou: mathematical ontology and structural realism.Fabio Gironi - 2014 - New York: Palgrave-Macmillan.
    This thesis offers a naturalist revision of Alain Badiou’s philosophy. This goal is pursued through an encounter of Badiou’s mathematical ontology and theory of truth with contemporary trends in philosophy of mathematics and philosophy of science. I take issue with Badiou’s inability to elucidate the link between the empirical and the ontological, and his residual reliance on a Heideggerian project of fundamental ontology, which undermines his own immanentist principles. I will argue for both a bottom-up naturalisation of Badiou’s philosophical approach (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematics and fiction II: Analogy.Robert Thomas - 2002 - Logique Et Analyse 45:185-228.
    The object of this paper is to study the analogy, drawn both positively and negatively, between mathematics and fiction. The analogy is more subtle and interesting than fictionalism, which was discussed in part I. Because analogy is not common coin among philosophers, this particular analogy has been discussed or mentioned for the most part just in terms of specific similarities that writers have noticed and thought worth mentioning without much attention's being paid to the larger picture. I intend with this (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Identity and indiscernibility.Jeffrey Ketland - 2011 - Review of Symbolic Logic 4 (2):171-185.
    The notion of strict identity is sometimes given an explicit second-order definition: objects with all the same properties are identical. Here, a somewhat different problem is raised: Under what conditions is the identity relation on the domain of a structure first-order definable? A structure may have objects that are distinct, but indiscernible by the strongest means of discerning them given the language (the indiscernibility formula). Here a number of results concerning the indiscernibility formula, and the definability of identity, are collected (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Logicism, Interpretability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Review of Symbolic Logic 7 (1):84-119.
    A crucial part of the contemporary interest in logicism in the philosophy of mathematics resides in its idea that arithmetical knowledge may be based on logical knowledge. Here an implementation of this idea is considered that holds that knowledge of arithmetical principles may be based on two things: (i) knowledge of logical principles and (ii) knowledge that the arithmetical principles are representable in the logical principles. The notions of representation considered here are related to theory-based and structure-based notions of representation (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the Exhaustion of Mathematical Entities by Structures.Adrian Heathcote - 2014 - Axiomathes 24 (2):167-180.
    There has been considerable discussion in the literature of one kind of identity problem that mathematical structuralism faces: the automorphism problem, in which the structure is unable to individuate the mathematical entities in its domain. Shapiro (Philos Math 16(3):285–309, 2008) has partly responded to these concerns. But I argue here that the theory faces an even more serious kind of identity problem, which the theory can’t overcome staying within its remit. I give two examples to make the point.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Coreference and meaning.N. Ángel Pinillos - 2011 - Philosophical Studies 154 (2):301 - 324.
    Sometimes two expressions in a discourse can be about the same thing in a way that makes that very fact evident to the participants. Consider, for example, 'he' and 'John' in 'John went to the store and he bought some milk'. Let us call this 'de jure' coreference. Other times, coreference is 'de facto' as with 'Mark Twain' and 'Samuel Clemens' in a sincere use of 'Mark Twain is not Samuel Clemens'. Here, agents can understand the speech without knowing that (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Wittgenstein on Incompleteness Makes Paraconsistent Sense.Francesco Berto - 2012 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Dordrecht, Netherland: Springer. pp. 257--276.
    I provide an interpretation of Wittgenstein's much criticized remarks on Gödel's First Incompleteness Theorem in the light of paraconsistent arithmetics: in taking Gödel's proof as a paradoxical derivation, Wittgenstein was right, given his deliberate rejection of the standard distinction between theory and metatheory. The reasoning behind the proof of the truth of the Gödel sentence is then performed within the formal system itself, which turns out to be inconsistent. I show that the models of paraconsistent arithmetics (obtained via the Meyer-Mortensen (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Mathematical representation: playing a role.Kate Hodesdon - 2014 - Philosophical Studies 168 (3):769-782.
    The primary justification for mathematical structuralism is its capacity to explain two observations about mathematical objects, typically natural numbers. Non-eliminative structuralism attributes these features to the particular ontology of mathematics. I argue that attributing the features to an ontology of structural objects conflicts with claims often made by structuralists to the effect that their structuralist theses are versions of Quine’s ontological relativity or Putnam’s internal realism. I describe and argue for an alternative explanation for these features which instead explains the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Cognitive Approach to Benacerraf's Dilemma.Luke Jerzykiewicz - 2009 - Dissertation, University of Western Ontario
    One of the important challenges in the philosophy of mathematics is to account for the semantics of sentences that express mathematical propositions while simultaneously explaining our access to their contents. This is Benacerraf’s Dilemma. In this dissertation, I argue that cognitive science furnishes new tools by means of which we can make progress on this problem. The foundation of the solution, I argue, must be an ontologically realist, albeit non-platonist, conception of mathematical reality. The semantic portion of the problem can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Emperor's New Metaphysics of Powers.Stephen Barker - 2013 - Mind 122 (487):605-653.
    This paper argues that the new metaphysics of powers, also known as dispositional essentialism or causal structuralism, is an illusory metaphysics. I argue for this in the following way. I begin by distinguishing three fundamental ways of seeing how facts of physical modality — facts about physical necessitation and possibility, causation, disposition, and chance — are grounded in the world. The first way, call it the first degree, is that the actual world or all worlds, in their entirety, are the (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Should Anti-Realists be Anti-Realists About Anti-Realism?Roy T. Cook - 2014 - Erkenntnis 79 (S2):233-258.
    On the Dummettian understanding, anti-realism regarding a particular discourse amounts to (or at the very least, involves) a refusal to accept the determinacy of the subject matter of that discourse and a corresponding refusal to assert at least some instances of excluded middle (which can be understood as expressing this determinacy of subject matter). In short: one is an anti-realist about a discourse if and only if one accepts intuitionistic logic as correct for that discourse. On careful examination, the strongest (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Structures and Logics: A Case for (a) Relativism.Stewart Shapiro - 2014 - Erkenntnis 79 (2):309-329.
    In this paper, I use the cases of intuitionistic arithmetic with Church’s thesis, intuitionistic analysis, and smooth infinitesimal analysis to argue for a sort of pluralism or relativism about logic. The thesis is that logic is relative to a structure. There are classical structures, intuitionistic structures, and (possibly) paraconsistent structures. Each such structure is a legitimate branch of mathematics, and there does not seem to be an interesting logic that is common to all of them. One main theme of my (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The philosophy of information as a conceptual framework.Luciano Floridi - 2010 - Knowledge, Technology & Policy 23 (1-2):1-31.
    The article contains the replies to the collection of contributions discussing my research on the philosophy of information.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Is unsaying polite?Berislav Žarnić - 2011 - In Majda Trobok, Nenad Miščević & Berislav Žarnić (eds.), Between Logic and Reality: Modeling Inference, Action and Understanding. Dordrecht and New York: Springer. pp. 201--224.
    This paper is divided in five sections. Section 11.1 sketches the history of the distinction between speech act with negative content and negated speech act, and gives a general dynamic interpretation for negated speech act. “Downdate semantics” for AGM contraction is introduced in Section 11.2. Relying on semantically interpreted contraction, Section 11.3 develops the dynamic semantics for constative and directive speech acts, and their external negations. The expressive completeness for the formal variants of natural language utterances, none of which is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What are groups?Katherine Ritchie - 2013 - Philosophical Studies 166 (2):257-272.
    In this paper I argue for a view of groups, things like teams, committees, clubs and courts. I begin by examining features all groups seem to share. I formulate a list of six features of groups that serve as criteria any adequate theory of groups must capture. Next, I examine four of the most prominent views of groups currently on offer—that groups are non-singular pluralities, fusions, aggregates and sets. I argue that each fails to capture one or more of the (...)
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • Dummett on abstract objects.George Duke - 2012 - New York: Palgrave-Macmillan.
    This book offers an historically-informed critical assessment of Dummett's account of abstract objects, examining in detail some of the Fregean presuppositions whilst also engaging with recent work on the problem of abstract entities.
    Download  
     
    Export citation  
     
    Bookmark  
  • Foundations for Mathematical Structuralism.Uri Nodelman & Edward N. Zalta - 2014 - Mind 123 (489):39-78.
    We investigate the form of mathematical structuralism that acknowledges the existence of structures and their distinctive structural elements. This form of structuralism has been subject to criticisms recently, and our view is that the problems raised are resolved by proper, mathematics-free theoretical foundations. Starting with an axiomatic theory of abstract objects, we identify a mathematical structure as an abstract object encoding the truths of a mathematical theory. From such foundations, we derive consequences that address the main questions and issues that (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography.Karin Usadi Katz & Mikhail G. Katz - 2012 - Foundations of Science 17 (1):51-89.
    We analyze the developments in mathematical rigor from the viewpoint of a Burgessian critique of nominalistic reconstructions. We apply such a critique to the reconstruction of infinitesimal analysis accomplished through the efforts of Cantor, Dedekind, and Weierstrass; to the reconstruction of Cauchy’s foundational work associated with the work of Boyer and Grabiner; and to Bishop’s constructivist reconstruction of classical analysis. We examine the effects of a nominalist disposition on historiography, teaching, and research.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Initial Conditions as Exogenous Factors in Spatial Explanation.Clint Ballinger - 2008 - Dissertation, University of Cambridge
    This dissertation shows how initial conditions play a special role in the explanation of contingent and irregular outcomes, including, in the form of geographic context, the special case of uneven development in the social sciences. The dissertation develops a general theory of this role, recognizes its empirical limitations in the social sciences, and considers how it might be applied to the question of uneven development. The primary purpose of the dissertation is to identify and correct theoretical problems in the study (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Identity Problem for Realist Structuralism.J. Keranen - 2001 - Philosophia Mathematica 9 (3):308--330.
    According to realist structuralism, mathematical objects are places in abstract structures. We argue that in spite of its many attractions, realist structuralism must be rejected. For, first, mathematical structures typically contain intra-structurally indiscernible places. Second, any account of place-identity available to the realist structuralist entails that intra-structurally indiscernible places are identical. Since for her mathematical singular terms denote places in structures, she would have to say, for example, that 1 = − 1 in the group (Z, +). We call this (...)
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • A Defense of Second-Order Logic.Otávio Bueno - 2010 - Axiomathes 20 (2-3):365-383.
    Second-order logic has a number of attractive features, in particular the strong expressive resources it offers, and the possibility of articulating categorical mathematical theories (such as arithmetic and analysis). But it also has its costs. Five major charges have been launched against second-order logic: (1) It is not axiomatizable; as opposed to first-order logic, it is inherently incomplete. (2) It also has several semantics, and there is no criterion to choose between them (Putnam, J Symbol Logic 45:464–482, 1980 ). Therefore, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What is Absolute Undecidability?†.Justin Clarke-Doane - 2012 - Noûs 47 (3):467-481.
    It is often supposed that, unlike typical axioms of mathematics, the Continuum Hypothesis (CH) is indeterminate. This position is normally defended on the ground that the CH is undecidable in a way that typical axioms are not. Call this kind of undecidability “absolute undecidability”. In this paper, I seek to understand what absolute undecidability could be such that one might hope to establish that (a) CH is absolutely undecidable, (b) typical axioms are not absolutely undecidable, and (c) if a mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (1 other version)The philosophy of computer science.Raymond Turner - 2013 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • From numerical concepts to concepts of number.Lance J. Rips, Amber Bloomfield & Jennifer Asmuth - 2008 - Behavioral and Brain Sciences 31 (6):623-642.
    Many experiments with infants suggest that they possess quantitative abilities, and many experimentalists believe that these abilities set the stage for later mathematics: natural numbers and arithmetic. However, the connection between these early and later skills is far from obvious. We evaluate two possible routes to mathematics and argue that neither is sufficient: (1) We first sketch what we think is the most likely model for infant abilities in this domain, and we examine proposals for extrapolating the natural number concept (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • The metaphysics of groups.Nikk Effingham - 2010 - Philosophical Studies 149 (2):251-267.
    If you are a realist about groups there are three main theories of what to identify groups with. I offer reasons for thinking that two of those theories fail to meet important desiderata. The third option is to identify groups with sets, which meets all of the desiderata if only we take care over which sets they are identified with. I then canvass some possible objections to that third theory, and explain how to avoid them.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • The Price of Mathematical Scepticism.Paul Blain Levy - 2022 - Philosophia Mathematica 30 (3):283-305.
    This paper argues that, insofar as we doubt the bivalence of the Continuum Hypothesis or the truth of the Axiom of Choice, we should also doubt the consistency of third-order arithmetic, both the classical and intuitionistic versions. -/- Underlying this argument is the following philosophical view. Mathematical belief springs from certain intuitions, each of which can be either accepted or doubted in its entirety, but not half-accepted. Therefore, our beliefs about reality, bivalence, choice and consistency should all be aligned.
    Download  
     
    Export citation  
     
    Bookmark  
  • The interactivist model.Mark H. Bickhard - 2009 - Synthese 166 (3):547 - 591.
    A shift from a metaphysical framework of substance to one of process enables an integrated account of the emergence of normative phenomena. I show how substance assumptions block genuine ontological emergence, especially the emergence of normativity, and how a process framework permits a thermodynamic-based account of normative emergence. The focus is on two foundational forms of normativity, that of normative function and of representation as emergent in a particular kind of function. This process model of representation, called interactivism, compels changes (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Logical constants.John MacFarlane - 2008 - Mind.
    Logic is usually thought to concern itself only with features that sentences and arguments possess in virtue of their logical structures or forms. The logical form of a sentence or argument is determined by its syntactic or semantic structure and by the placement of certain expressions called “logical constants.”[1] Thus, for example, the sentences Every boy loves some girl. and Some boy loves every girl. are thought to differ in logical form, even though they share a common syntactic and semantic (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Can structuralism solve the ‘access’ problem?Fraser MacBride - 2004 - Analysis 64 (4):309–317.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Bad company generalized.Gabriel Uzquiano - 2009 - Synthese 170 (3):331 - 347.
    The paper is concerned with the bad company problem as an instance of a more general difficulty in the philosophy of mathematics. The paper focuses on the prospects of stability as a necessary condition on acceptability. However, the conclusion of the paper is largely negative. As a solution to the bad company problem, stability would undermine the prospects of a neo-Fregean foundation for set theory, and, as a solution to the more general difficulty, it would impose an unreasonable constraint on (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Spacetime, Ontology, and Structural Realism.Edward Slowik - 2005 - International Studies in the Philosophy of Science 19 (2):147 – 166.
    This essay explores the possibility of constructing a structural realist interpretation of spacetime theories that can resolve the ontological debate between substantivalists and relationists. Drawing on various structuralist approaches in the philosophy of mathematics, as well as on the theoretical complexities of general relativity, our investigation will reveal that a structuralist approach can be beneficial to the spacetime theorist as a means of deflating some of the ontological disputes regarding similarly structured spacetimes.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)Weak discernibility.Katherine Hawley - 2006 - Analysis 66 (4):300–303.
    Simon Saunders argues that, although distinct objects must be discernible, they need only be weakly discernible (Saunders 2003, 2006a). I will argue that this combination of views is unmotivated: if there can be objects which differ only weakly, there can be objects which don’t differ at all.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Cassirer, Schlick and 'structural' realism: The philosophy of the exact sciences in the background to early logical empiricism.Barry Gower - 2000 - British Journal for the History of Philosophy 8 (1):71 – 106.
    (2000). CASSIRER, SCHLICK AND ‘STRUCTURAL’ REALISM: THE PHILOSOPHY OF THE EXACT SCIENCES IN THE BACKGROUND TO EARLY LOGICAL EMPIRICISM. British Journal for the History of Philosophy: Vol. 8, No. 1, pp. 71-106.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Quine, Putnam, and the ‘Quine–Putnam’ Indispensability Argument.David Liggins - 2008 - Erkenntnis 68 (1):113 - 127.
    Much recent discussion in the philosophy of mathematics has concerned the indispensability argument—an argument which aims to establish the existence of abstract mathematical objects through appealing to the role that mathematics plays in empirical science. The indispensability argument is standardly attributed to W. V. Quine and Hilary Putnam. In this paper, I show that this attribution is mistaken. Quine's argument for the existence of abstract mathematical objects differs from the argument which many philosophers of mathematics ascribe to him. Contrary to (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Initial Conditions and the 'Open Systems' Argument against Laws of Nature.Clint Ballinger - 2008 - Metaphysica 9 (1):17-31.
    This article attacks “open systems” arguments that because constant conjunctions are not generally observed in the real world of open systems we should be highly skeptical that universal laws exist. This work differs from other critiques of open system arguments against laws of nature by not focusing on laws themselves, but rather on the inference from open systems. We argue that open system arguments fail for two related reasons; 1) because they cannot account for the “systems” central to their argument (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematics and bleak house.John P. Burgess - 2004 - Philosophia Mathematica 12 (1):18-36.
    The form of nominalism known as 'mathematical fictionalism' is examined and found wanting, mainly on grounds that go back to an early antinominalist work of Rudolf Carnap that has unfortunately not been paid sufficient attention by more recent writers.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Husserl on completeness, definitely.Mirja Hartimo - 2018 - Synthese 195 (4):1509-1527.
    The paper discusses Husserl’s notion of definiteness as presented in his Göttingen Mathematical Society Double Lecture of 1901 as a defense of two, in many cases incompatible, ideals, namely full characterizability of the domain, i.e., categoricity, and its syntactic completeness. These two ideals are manifest already in Husserl’s discussion of pure logic in the Prolegomena: The full characterizability is related to Husserl’s attempt to capture the interconnection of things, whereas syntactic completeness relates to the interconnection of truths. In the Prolegomena (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Mathematical Objectivity and Husserl’s “Community of Monads”.Noam Cohen - 2022 - Axiomathes 32 (3):971-991.
    This paper argues that the shared intersubjective accessibility of mathematical objects has its roots in a stratum of experience prior to language or any other form of concrete social interaction. On the basis of Husserl’s phenomenology, I demonstrate that intersubjectivity is an essential stratum of the objects of mathematical experience, i.e., an integral part of the peculiar sense of a mathematical object is its common accessibility to any consciousness whatsoever. For Husserl, any experience of an objective nature has as its (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Explicit Abstract Objects in Predicative Settings.Sean Ebels-Duggan & Francesca Boccuni - 2024 - Journal of Philosophical Logic 53 (5):1347-1382.
    Abstractionist programs in the philosophy of mathematics have focused on abstraction principles, taken as implicit definitions of the objects in the range of their operators. In second-order logic (SOL) with predicative comprehension, such principles are consistent but also (individually) mathematically weak. This paper, inspired by the work of Boolos (Proceedings of the Aristotelian Society 87, 137–151, 1986) and Zalta (Abstract Objects, vol. 160 of Synthese Library, 1983), examines explicit definitions of abstract objects. These axioms state that there is a unique (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The psychopathology of metaphysics.Billon Alexandre - 2024 - Metaphilosophy 1 (01):1-28.
    According to a common philosophical intuition, the deep nature of things is hidden from us, and the world as we know it through perception and science is somehow shallow and lacking in reality. For all we knwo, the intuition goes, we could be living in a cave facing shadows, in a dream or even in a computer simulation, This “intuition of unreality” clashes with a strong, but perhaps more naive, intuition to the effect that the world as we know it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Individuating Powers: On the Regress/Circularity Individuation Arguments against Bird’s Dispositional Monism.Lorenzo Azzano - 2023 - Ergo: An Open Access Journal of Philosophy 10.
    According to Bird’s Naïve Dispositional Monism, all properties are powers, and are individuated by their manifestations. Lowe has famously challenged the position with an individuation regress or circularity argument. Bird has then offered a structuralist side-step in the form of Structuralist Dispositional Monism, according to which powers are individuated through the unique position they occupy in an asymmetric power-structure. However, Structuralist Dispositional Monism has been argued to be just as problematic as Naïve Dispositional Monism, if not more so.I argue that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Observation and Intuition.Justin Clarke-Doane & Avner Ash - 2023 - In Carolin Antos, Neil Barton & Giorgio Venturi (eds.), The Palgrave Companion to the Philosophy of Set Theory. Palgrave.
    The motivating question of this paper is: ‘How are our beliefs in the theorems of mathematics justified?’ This is distinguished from the question ‘How are our mathematical beliefs reliably true?’ We examine an influential answer, outlined by Russell, championed by Gödel, and developed by those searching for new axioms to settle undecidables, that our mathematical beliefs are justified by ‘intuitions’, as our scientific beliefs are justified by observations. On this view, axioms are analogous to laws of nature. They are postulated (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The iterative conception of function and the iterative conception of set.Tim Button - 2023 - In Carolin Antos, Neil Barton & Giorgio Venturi (eds.), The Palgrave Companion to the Philosophy of Set Theory. Palgrave.
    Hilary Putnam once suggested that “the actual existence of sets as ‘intangible objects’ suffers… from a generalization of a problem first pointed out by Paul Benacerraf… are sets a kind of function or are functions a sort of set?” Sadly, he did not elaborate; my aim, here, is to do so on his behalf. There are well-known methods for treating sets as functions and functions as sets. But these do not raise any obvious philosophical or foundational puzzles. For that, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Caesar Problem — A Piecemeal Solution.J. P. Studd - 2023 - Philosophia Mathematica 31 (2):236-267.
    The Caesar problem arises for abstractionist views, which seek to secure reference for terms such as ‘the number of Xs’ or #X by stipulating the content of ‘unmixed’ identity contexts like ‘#X = #Y’. Frege objects that this stipulation says nothing about ‘mixed’ contexts such as ‘# X = Julius Caesar’. This article defends a neglected response to the Caesar problem: the content of mixed contexts is just as open to stipulation as that of unmixed contexts.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Pluralism.Edward N. Zalta - 2024 - Noûs 58 (2):306-332.
    Mathematical pluralism can take one of three forms: (1) every consistent mathematical theory consists of truths about its own domain of individuals and relations; (2) every mathematical theory, consistent or inconsistent, consists of truths about its own (possibly uninteresting) domain of individuals and relations; and (3) the principal philosophies of mathematics are each based upon an insight or truth about the nature of mathematics that can be validated. (1) includes the multiverse approach to set theory. (2) helps us to understand (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations