Switch to: Citations

Add references

You must login to add references.
  1. Propositional consistency proofs.Samuel R. Buss - 1991 - Annals of Pure and Applied Logic 52 (1-2):3-29.
    Partial consistency statements can be expressed as polynomial-size propositional formulas. Frege proof systems have polynomial-size partial self-consistency proofs. Frege proof systems have polynomial-size proofs of partial consistency of extended Frege proof systems if and only if Frege proof systems polynomially simulate extended Frege proof systems. We give a new proof of Reckhow's theorem that any two Frege proof systems p-simulate each other. The proofs depend on polynomial size propositional formulas defining the truth of propositional formulas. These are already known to (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)The Complexity of Propositional Proofs.Nathan Segerlind - 1995 - Bulletin of Symbolic Logic 1 (4):425-467.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Dual weak pigeonhole principle, pseudo-surjective functions, and provability of circuit lower bounds.Jan Krajíček - 2004 - Journal of Symbolic Logic 69 (1):265-286.
    This article is a continuation of our search for tautologies that are hard even for strong propositional proof systems like EF, cf. [Kra-wphp,Kra-tau]. The particular tautologies we study, the τ-formulas, are obtained from any.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A Machine Program for Theorem-Proving.Martin Davis, George Logemann & Donald Loveland - 1967 - Journal of Symbolic Logic 32 (1):118-118.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Lower Bounds to the size of constant-depth propositional proofs.Jan Krajíček - 1994 - Journal of Symbolic Logic 59 (1):73-86.
    LK is a natural modification of Gentzen sequent calculus for propositional logic with connectives ¬ and $\bigwedge, \bigvee$. Then for every d ≥ 0 and n ≥ 2, there is a set Td n of depth d sequents of total size O which are refutable in LK by depth d + 1 proof of size exp) but such that every depth d refutation must have the size at least exp). The sets Td n express a weaker form of the pigeonhole (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • A Note on Conservativity Relations among Bounded Arithmetic Theories.Russell Impagliazzo & Jan Krajíček - 2002 - Mathematical Logic Quarterly 48 (3):375-377.
    For all i ≥ 1, Ti+11 is not ∀Σb2-conservative over Ti1.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Propositional proof systems, the consistency of first order theories and the complexity of computations.Jan Krajíček & Pavel Pudlák - 1989 - Journal of Symbolic Logic 54 (3):1063-1079.
    We consider the problem about the length of proofs of the sentences $\operatorname{Con}_S(\underline{n})$ saying that there is no proof of contradiction in S whose length is ≤ n. We show the relation of this problem to some problems about propositional proof systems.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • (1 other version)Minimum propositional proof length is NP-Hard to linearly approximate.Michael Alekhnovich, Sam Buss, Shlomo Moran & Toniann Pitassi - 2001 - Journal of Symbolic Logic 66 (1):171-191.
    We prove that the problem of determining the minimum propositional proof length is NP- hard to approximate within a factor of 2 log 1 - o(1) n . These results are very robust in that they hold for almost all natural proof systems, including: Frege systems, extended Frege systems, resolution, Horn resolution, the polynomial calculus, the sequent calculus, the cut-free sequent calculus, as well as the polynomial calculus. Our hardness of approximation results usually apply to proof length measured either by (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)The complexity of propositional proofs.Nathan Segerlind - 2007 - Bulletin of Symbolic Logic 13 (4):417-481.
    Propositional proof complexity is the study of the sizes of propositional proofs, and more generally, the resources necessary to certify propositional tautologies. Questions about proof sizes have connections with computational complexity, theories of arithmetic, and satisfiability algorithms. This is article includes a broad survey of the field, and a technical exposition of some recently developed techniques for proving lower bounds on proof sizes.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Lower Bounds for resolution and cutting plane proofs and monotone computations.Pavel Pudlak - 1997 - Journal of Symbolic Logic 62 (3):981-998.
    We prove an exponential lower bound on the length of cutting plane proofs. The proof uses an extension of a lower bound for monotone circuits to circuits which compute with real numbers and use nondecreasing functions as gates. The latter result is of independent interest, since, in particular, it implies an exponential lower bound for some arithmetic circuits.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • A lower bound for intuitionistic logic.Pavel Hrubeš - 2007 - Annals of Pure and Applied Logic 146 (1):72-90.
    We give an exponential lower bound on the number of proof-lines in intuitionistic propositional logic, IL, axiomatised in the usual Frege-style fashion; i.e., we give an example of IL-tautologies A1,A2,… s.t. every IL-proof of Ai must have a number of proof-lines exponential in terms of the size of Ai. We show that the results do not apply to the system of classical logic and we obtain an exponential speed-up between classical and intuitionistic logic.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Dual weak pigeonhole principle, pseudo-surjective functions, and provability of circuit lower bounds.Jan Kraj�?Ek - 2004 - Journal of Symbolic Logic 69 (1):265-286.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Interpolation theorems, lower Bounds for proof systems, and independence results for bounded arithmetic.Jan Krajíček - 1997 - Journal of Symbolic Logic 62 (2):457-486.
    A proof of the (propositional) Craig interpolation theorem for cut-free sequent calculus yields that a sequent with a cut-free proof (or with a proof with cut-formulas of restricted form; in particular, with only analytic cuts) with k inferences has an interpolant whose circuit-size is at most k. We give a new proof of the interpolation theorem based on a communication complexity approach which allows a similar estimate for a larger class of proofs. We derive from it several corollaries: (1) Feasible (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Linearizing intuitionistic implication.Patrick Lincoln, Andre Scedrov & Natarajan Shankar - 1993 - Annals of Pure and Applied Logic 60 (2):151-177.
    An embedding of the implicational propositional intuitionistic logic into the nonmodal fragment of intuitionistic linear logic is given. The embedding preserves cut-free proofs in a proof system that is a variant of IIL. The embedding is efficient and provides an alternative proof of the PSPACE-hardness of IMALL. It exploits several proof-theoretic properties of intuitionistic implication that analyze the use of resources in IIL proofs.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The complexity of Horn fragments of Linear Logic.Max I. Kanovich - 1994 - Annals of Pure and Applied Logic 69 (2-3):195-241.
    The question at issue is to develop a computational interpretation of Girard's Linear Logic [Girard, 1987] and to obtain efficient decision algorithms for this logic, based on the bottom-up approach. It involves starting with the simplest natural fragment of linear logic and then expanding it step-by-step. We give a complete computational interpretation for the Horn fragment of Linear Logic and some natural generalizations of it enriched by the two additive connectives: and &. Within the framework of this interpretation, it becomes (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On lengths of proofs in non-classical logics.Pavel Hrubeš - 2009 - Annals of Pure and Applied Logic 157 (2-3):194-205.
    We give proofs of the effective monotone interpolation property for the system of modal logic K, and others, and the system IL of intuitionistic propositional logic. Hence we obtain exponential lower bounds on the number of proof-lines in those systems. The main results have been given in [P. Hrubeš, Lower bounds for modal logics, Journal of Symbolic Logic 72 941–958; P. Hrubeš, A lower bound for intuitionistic logic, Annals of Pure and Applied Logic 146 72–90]; here, we give considerably simplified (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Polynomial size proofs of the propositional pigeonhole principle.Samuel R. Buss - 1987 - Journal of Symbolic Logic 52 (4):916-927.
    Cook and Reckhow defined a propositional formulation of the pigeonhole principle. This paper shows that there are Frege proofs of this propositional pigeonhole principle of polynomial size. This together with a result of Haken gives another proof of Urquhart's theorem that Frege systems have an exponential speedup over resolution. We also discuss connections to provability in theories of bounded arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Decision problems for propositional linear logic.Patrick Lincoln, John Mitchell, Andre Scedrov & Natarajan Shankar - 1992 - Annals of Pure and Applied Logic 56 (1-3):239-311.
    Linear logic, introduced by Girard, is a refinement of classical logic with a natural, intrinsic accounting of resources. This accounting is made possible by removing the ‘structural’ rules of contraction and weakening, adding a modal operator and adding finer versions of the propositional connectives. Linear logic has fundamental logical interest and applications to computer science, particularly to Petri nets, concurrency, storage allocation, garbage collection and the control structure of logic programs. In addition, there is a direct correspondence between polynomial-time computation (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Lower Bounds for Modal Logics.Pavel Hrubeš - 2007 - Journal of Symbolic Logic 72 (3):941 - 958.
    We give an exponential lower bound on number of proof-lines in the proof system K of modal logic, i.e., we give an example of K-tautologies ψ₁, ψ₂,... s.t. every K-proof of ψi must have a number of proof-lines exponential in terms of the size of ψi. The result extends, for the same sequence of K-tautologies, to the systems K4, Gödel—Löb's logic, S and S4. We also determine some speed-up relations between different systems of modal logic on formulas of modal-depth one.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The relative efficiency of propositional proof systems.Stephen A. Cook & Robert A. Reckhow - 1979 - Journal of Symbolic Logic 44 (1):36-50.
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • A Computing Procedure for Quantification Theory.Martin Davis & Hilary Putnam - 1966 - Journal of Symbolic Logic 31 (1):125-126.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • An exponential lower bound for a constraint propagation proof system based on ordered binary decision diagrams.Jan Krajíček - 2008 - Journal of Symbolic Logic 73 (1):227-237.
    We prove an exponential lower bound on the size of proofs in the proof system operating with ordered binary decision diagrams introduced by Atserias, Kolaitis and Vardi [2]. In fact, the lower bound applies to semantic derivations operating with sets defined by OBDDs. We do not assume any particular format of proofs or ordering of variables, the hard formulas are in CNF. We utilize (somewhat indirectly) feasible interpolation. We define a proof system combining resolution and the OBDD proof system.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Product-free lambek calculus is NP-complete.Yury Savateev - 2012 - Annals of Pure and Applied Logic 163 (7):775-788.
    Download  
     
    Export citation  
     
    Bookmark   5 citations