Switch to: Citations

Add references

You must login to add references.
  1. The Higher Infinite.Akihiro Kanamori - 2000 - Studia Logica 65 (3):443-446.
    Download  
     
    Export citation  
     
    Bookmark   212 citations  
  • The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal.W. Hugh Woodin - 2002 - Bulletin of Symbolic Logic 8 (1):91-93.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • (1 other version)Infinite time Turing machines.Joel David Hamkins & Andy Lewis - 2000 - Journal of Symbolic Logic 65 (2):567-604.
    Infinite time Turing machines extend the operation of ordinary Turing machines into transfinite ordinal time. By doing so, they provide a natural model of infinitary computability, a theoretical setting for the analysis of the power and limitations of supertask algorithms.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Inner models with many Woodin cardinals.J. R. Steel - 1993 - Annals of Pure and Applied Logic 65 (2):185-209.
    We extend the theory of “Fine structure and iteration trees” to models having more than one Woodin cardinal.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Projectively well-ordered inner models.J. R. Steel - 1995 - Annals of Pure and Applied Logic 74 (1):77-104.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • (1 other version)Optimal proofs of determinacy.Itay Neeman - 1995 - Bulletin of Symbolic Logic 1 (3):327-339.
    In this paper I shall present a method for proving determinacy from large cardinals which, in many cases, seems to yield optimal results. One of the main applications extends theorems of Martin, Steel and Woodin about determinacy within the projective hierarchy. The method can also be used to give a new proof of Woodin's theorem about determinacy in L.The reason we look for optimal determinacy proofs is not only vanity. Such proofs serve to tighten the connection between large cardinals and (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Register computations on ordinals.Peter Koepke & Ryan Siders - 2008 - Archive for Mathematical Logic 47 (6):529-548.
    We generalize ordinary register machines on natural numbers to machines whose registers contain arbitrary ordinals. Ordinal register machines are able to compute a recursive bounded truth predicate on the ordinals. The class of sets of ordinals which can be read off the truth predicate satisfies a natural theory SO. SO is the theory of the sets of ordinals in a model of the Zermelo-Fraenkel axioms ZFC. This allows the following characterization of computable sets: a set of ordinals is ordinal register (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The basic theory of infinite time register machines.Merlin Carl, Tim Fischbach, Peter Koepke, Russell Miller, Miriam Nasfi & Gregor Weckbecker - 2010 - Archive for Mathematical Logic 49 (2):249-273.
    Infinite time register machines (ITRMs) are register machines which act on natural numbers and which are allowed to run for arbitrarily many ordinal steps. Successor steps are determined by standard register machine commands. At limit times register contents are defined by appropriate limit operations. In this paper, we examine the ITRMs introduced by the third and fourth author (Koepke and Miller in Logic and Theory of Algorithms LNCS, pp. 306–315, 2008), where a register content at a limit time is set (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Algebraicity and Implicit Definability in Set Theory.Joel David Hamkins & Cole Leahy - 2016 - Notre Dame Journal of Formal Logic 57 (3):431-439.
    We analyze the effect of replacing several natural uses of definability in set theory by the weaker model-theoretic notion of algebraicity. We find, for example, that the class of hereditarily ordinal algebraic sets is the same as the class of hereditarily ordinal definable sets; that is, $\mathrm{HOA}=\mathrm{HOD}$. Moreover, we show that every algebraic model of $\mathrm{ZF}$ is actually pointwise definable. Finally, we consider the implicitly constructible universe Imp—an algebraic analogue of the constructible universe—which is obtained by iteratively adding not only (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • λ-structures and s-structures: Translating the models.Gunter Fuchs - 2011 - Annals of Pure and Applied Logic 162 (4):257-317.
    I develop a translation procedure between λ-structures, which correspond to premice in the Friedman–Jensen indexing convention on the one hand and s-structures, which are essentially the same as premice in the Mitchell–Steel indexing scheme.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Degrees of rigidity for Souslin trees.Gunter Fuchs & Joel David Hamkins - 2009 - Journal of Symbolic Logic 74 (2):423-454.
    We investigate various strong notions of rigidity for Souslin trees, separating them under ♢ into a hierarchy. Applying our methods to the automorphism tower problem in group theory, we show under ♢ that there is a group whose automorphism tower is highly malleable by forcing.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Proper forcing and l(ℝ).Itay Neeman & Jindrich Zapletal - 2001 - Journal of Symbolic Logic 66 (2):801-810.
    We present two ways in which the model L(R) is canonical assuming the existence of large cardinals. We show that the theory of this model, with ordinal parameters, cannot be changed by small forcing; we show further that a set of ordinals in V cannot be added to L(R) by small forcing. The large cardinal needed corresponds to the consistency strength of AD L (R); roughly ω Woodin cardinals.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Hypermachines.Sy-David Friedman & P. D. Welch - 2011 - Journal of Symbolic Logic 76 (2):620 - 636.
    The Infinite Time Turing Machine model [8] of Hamkins and Kidder is, in an essential sense, a "Σ₂-machine" in that it uses a Σ₂ Liminf Rule to determine cell values at limit stages of time. We give a generalisation of these machines with an appropriate Σ n rule. Such machines either halt or enter an infinite loop by stage ζ(n) = df μζ(n)[∃Σ(n) > ζ(n) L ζ(n) ≺ Σn L Σ(n) ], again generalising precisely the ITTM case. The collection of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Infinite Computations with Random Oracles.Merlin Carl & Philipp Schlicht - 2017 - Notre Dame Journal of Formal Logic 58 (2):249-270.
    We consider the following problem for various infinite-time machines. If a real is computable relative to a large set of oracles such as a set of full measure or just of positive measure, a comeager set, or a nonmeager Borel set, is it already computable? We show that the answer is independent of ZFC for ordinal Turing machines with and without ordinal parameters and give a positive answer for most other machines. For instance, we consider infinite-time Turing machines, unresetting and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • λ-structures and s-structures: Translating the iteration strategies.Gunter Fuchs - 2011 - Annals of Pure and Applied Logic 162 (9):710-751.
    Continuing the work of Fuchs [1], I show that the translation functions developed previously map iterable λ-structures to iterable s-structures and vice versa. To this end, I analyse how the translation functions interact with the formation of extender ultrapowers and normal iterations. This analysis makes it possible to translate iterations, and, in a last step, iteration strategies, thus arriving at the result.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The distribution of ITRM-recognizable reals.Merlin Carl - 2014 - Annals of Pure and Applied Logic 165 (9):1403-1417.
    Infinite Time Register Machines are a well-established machine model for infinitary computations. Their computational strength relative to oracles is understood, see e.g. , and . We consider the notion of recognizability, which was first formulated for Infinite Time Turing Machines in [6] and applied to ITRM 's in [3]. A real x is ITRM -recognizable iff there is an ITRM -program P such that PyPy stops with output 1 iff y=xy=x, and otherwise stops with output 0. In [3], it is (...))
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Inner Models and Large Cardinals.Martin Zeman - 2003 - Bulletin of Symbolic Logic 9 (2):234-235.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Thin equivalence relations and inner models.Philipp Schlicht - 2014 - Annals of Pure and Applied Logic 165 (10):1577-1625.
    We describe the inner models with representatives in all equivalence classes of thin equivalence relations in a given projective pointclass of even level assuming projective determinacy. The main result shows that these models are characterized by their correctness and the property that they correctly compute the tree from the appropriate scale. The main step towards this characterization shows that the tree from a scale can be reconstructed in a generic extension of an iterate of a mouse. We then construct models (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations