Switch to: Citations

Add references

You must login to add references.
  1. Radical Embodied Cognitive Science.Anthony Chemero - 2009 - Bradford.
    While philosophers of mind have been arguing over the status of mental representations in cognitive science, cognitive scientists have been quietly engaged in studying perception, action, and cognition without explaining them in terms of mental representation. In this book, Anthony Chemero describes this nonrepresentational approach, puts it in historical and conceptual context, and applies it to traditional problems in the philosophy of mind. Radical embodied cognitive science is a direct descendant of the American naturalist psychology of William James and John (...)
    Download  
     
    Export citation  
     
    Bookmark   626 citations  
  • The social construction of what?Ian Hacking - 1999 - Cambridge, Mass: Harvard University Press.
    Especially troublesome in this dispute is the status of the natural sciences, and this is where Hacking finds some of his most telling cases, from the conflict ...
    Download  
     
    Export citation  
     
    Bookmark   640 citations  
  • Simulation and Similarity: Using Models to Understand the World.Michael Weisberg - 2013 - New York, US: Oxford University Press.
    one takes to be the most salient, any pair could be judged more similar to each other than to the third. Goodman uses this second problem to showthat there can be no context-free similarity metric, either in the trivial case or in a scientifically ...
    Download  
     
    Export citation  
     
    Bookmark   373 citations  
  • Enactivist Interventions: Rethinking the Mind.Shaun Gallagher - 2017 - Oxford: Oxford University Press.
    Enactivist Interventions is an interdisciplinary work that explores how theories of embodied cognition illuminate many aspects of the mind, including perception, affect, and action. Gallagher argues that the brain is not secluded from the world or isolated in its own processes, but rather is dynamically connected with body and environment.
    Download  
     
    Export citation  
     
    Bookmark   222 citations  
  • The Scientific Image.William Demopoulos & Bas C. van Fraassen - 1982 - Philosophical Review 91 (4):603.
    Download  
     
    Export citation  
     
    Bookmark   1798 citations  
  • Scientific Representation: Paradoxes of Perspective.Bas C. Van Fraassen - 2008 - Oxford, GB: Oxford University Press UK.
    Bas C. van Fraassen presents an original exploration of how we represent the world.
    Download  
     
    Export citation  
     
    Bookmark   296 citations  
  • The Mangle of Practice: Time, Agency, and Science.Andrew Pickering - 1995 - University of Chicago Press.
    This ambitious book by one of the most original and provocative thinkers in science studies offers a sophisticated new understanding of the nature of scientific, mathematical, and engineering practice and the production of scientific knowledge. Andrew Pickering offers a new approach to the unpredictable nature of change in science, taking into account the extraordinary number of factors—social, technological, conceptual, and natural—that interact to affect the creation of scientific knowledge. In his view, machines, instruments, facts, theories, conceptual and mathematical structures, disciplined (...)
    Download  
     
    Export citation  
     
    Bookmark   244 citations  
  • Reconstructing Reality: Models, Mathematics, and Simulations.Margaret Morrison - 2014 - New York, US: Oup Usa.
    The book examines issues related to the way modeling and simulation enable us to reconstruct aspects of the world we are investigating. It also investigates the processes by which we extract concrete knowledge from those reconstructions and how that knowledge is legitimated.
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Mathematics and Scientific Representation.Christopher Pincock - 2011 - Oxford and New York: Oxford University Press USA.
    Mathematics plays a central role in much of contemporary science, but philosophers have struggled to understand what this role is or how significant it might be for mathematics and science. In this book Christopher Pincock tackles this perennial question in a new way by asking how mathematics contributes to the success of our best scientific representations. In the first part of the book this question is posed and sharpened using a proposal for how we can determine the content of a (...)
    Download  
     
    Export citation  
     
    Bookmark   115 citations  
  • How models are used to represent reality.Ronald N. Giere - 2004 - Philosophy of Science 71 (5):742-752.
    Most recent philosophical thought about the scientific representation of the world has focused on dyadic relationships between language-like entities and the world, particularly the semantic relationships of reference and truth. Drawing inspiration from diverse sources, I argue that we should focus on the pragmatic activity of representing, so that the basic representational relationship has the form: Scientists use models to represent aspects of the world for specific purposes. Leaving aside the terms "law" and "theory," I distinguish principles, specific conditions, models, (...)
    Download  
     
    Export citation  
     
    Bookmark   312 citations  
  • The strategy of model-based science.Peter Godfrey-Smith - 2006 - Biology and Philosophy 21 (5):725-740.
    Download  
     
    Export citation  
     
    Bookmark   284 citations  
  • Scientific Representation: Paradoxes of Perspective.B. C. van Fraassen - 2010 - Analysis 70 (3):511-514.
    Download  
     
    Export citation  
     
    Bookmark   275 citations  
  • Who is a Modeler?Michael Weisberg - 2007 - British Journal for the Philosophy of Science 58 (2):207-233.
    Many standard philosophical accounts of scientific practice fail to distinguish between modeling and other types of theory construction. This failure is unfortunate because there are important contrasts among the goals, procedures, and representations employed by modelers and other kinds of theorists. We can see some of these differences intuitively when we reflect on the methods of theorists such as Vito Volterra and Linus Pauling on the one hand, and Charles Darwin and Dimitri Mendeleev on the other. Much of Volterra's and (...)
    Download  
     
    Export citation  
     
    Bookmark   223 citations  
  • Failure to detect mismatches between intention and outcome in a simple decision task.Petter Johansson, Lars Hall, Sverker Sikstrom & Andreas Olsson - 2005 - Science 310 (5745):116-119.
    A fundamental assumption of theories of decision-making is that we detect mismatches between intention and outcome, adjust our behavior in the face of error, and adapt to changing circumstances. Is this always the case? We investigated the relation between intention, choice, and introspection. Participants made choices between presented face pairs on the basis of attractiveness, while we covertly manipulated the relationship between choice and outcome that they experienced. Participants failed to notice conspicuous mismatches between their intended choice and the outcome (...)
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • (2 other versions)Experience and Nature.John Dewey - 1958 - Les Etudes Philosophiques 15 (1):98-98.
    Download  
     
    Export citation  
     
    Bookmark   309 citations  
  • (1 other version)Experience and Nature.John Dewey - 1925 - Mind 34 (136):476-482.
    Download  
     
    Export citation  
     
    Bookmark   304 citations  
  • An inferential conception of scientific representation.Mauricio Suárez - 2004 - Philosophy of Science 71 (5):767-779.
    This paper defends an inferential conception of scientific representation. It approaches the notion of representation in a deflationary spirit, and minimally characterizes the concept as it appears in science by means of two necessary conditions: its essential directionality and its capacity to allow surrogate reasoning and inference. The conception is defended by showing that it successfully meets the objections that make its competitors, such as isomorphism and similarity, untenable. In addition the inferential conception captures the objectivity of the cognitive representations (...)
    Download  
     
    Export citation  
     
    Bookmark   254 citations  
  • Models as make-believe: imagination, fiction, and scientific representation.Adam Toon - 2012 - New York: Palgrave-Macmillan.
    Models as Make-Believe offers a new approach to scientific modelling by looking to an unlikely source of inspiration: the dolls and toy trucks of children's games of make-believe.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • (2 other versions)Experience and Nature.John Dewey - 1929 - Humana Mente 4 (16):555-558.
    Download  
     
    Export citation  
     
    Bookmark   289 citations  
  • Modelling and representing: An artefactual approach to model-based representation.Tarja Knuuttila - 2011 - Studies in History and Philosophy of Science Part A 42 (2):262-271.
    The recent discussion on scientific representation has focused on models and their relationship to the real world. It has been assumed that models give us knowledge because they represent their supposed real target systems. However, here agreement among philosophers of science has tended to end as they have presented widely different views on how representation should be understood. I will argue that the traditional representational approach is too limiting as regards the epistemic value of modelling given the focus on the (...)
    Download  
     
    Export citation  
     
    Bookmark   137 citations  
  • (2 other versions)Experience and Nature.John Dewey - 1928 - Revue de Métaphysique et de Morale 35 (1):10-12.
    Download  
     
    Export citation  
     
    Bookmark   259 citations  
  • Does matter really matter? Computer simulations, experiments, and materiality.Wendy S. Parker - 2009 - Synthese 169 (3):483-496.
    A number of recent discussions comparing computer simulation and traditional experimentation have focused on the significance of “materiality.” I challenge several claims emerging from this work and suggest that computer simulation studies are material experiments in a straightforward sense. After discussing some of the implications of this material status for the epistemology of computer simulation, I consider the extent to which materiality (in a particular sense) is important when it comes to making justified inferences about target systems on the basis (...)
    Download  
     
    Export citation  
     
    Bookmark   137 citations  
  • An agent-based conception of models and scientific representation.Ronald N. Giere - 2010 - Synthese 172 (2):269–281.
    I argue for an intentional conception of representation in science that requires bringing scientific agents and their intentions into the picture. So the formula is: Agents (1) intend; (2) to use model, M; (3) to represent a part of the world, W; (4) for some purpose, P. This conception legitimates using similarity as the basic relationship between models and the world. Moreover, since just about anything can be used to represent anything else, there can be no unified ontology of models. (...)
    Download  
     
    Export citation  
     
    Bookmark   133 citations  
  • What’s so special about model organisms?Rachel A. Ankeny & Sabina Leonelli - 2011 - Studies in History and Philosophy of Science Part A 42 (2):313-323.
    This paper aims to identify the key characteristics of model organisms that make them a specific type of model within the contemporary life sciences: in particular, we argue that the term “model organism” does not apply to all organisms used for the purposes of experimental research. We explore the differences between experimental and model organisms in terms of their material and epistemic features, and argue that it is essential to distinguish between their representational scope and representational target. We also examine (...)
    Download  
     
    Export citation  
     
    Bookmark   117 citations  
  • Overcoming the Myth of the Mental: How Philosophers Can Profit from the Phenomenology of Everyday Expertise.Hubert L. Dreyfus - 2005 - Proceedings and Addresses of the American Philosophical Association 79 (2):47 - 65.
    Back in 1950, while a physics major at Harvard, I wandered into C.I. Lewis’s epistemology course. There, Lewis was confidently expounding the need for an indubitable Given to ground knowledge, and he was explaining where that ground was to be found. I was so impressed that I immediately switched majors from ungrounded physics to grounded philosophy.
    Download  
     
    Export citation  
     
    Bookmark   144 citations  
  • (3 other versions)Models and representation.Roman Frigg & James Nguyen - 2017 - In Lorenzo Magnani & Tommaso Bertolotti (eds.), Springer Handbook of Model-Based Science. Springer. pp. 49-102.
    Scientific discourse is rife with passages that appear to be ordinary descriptions of systems of interest in a particular discipline. Equally, the pages of textbooks and journals are filled with discussions of the properties and the behavior of those systems. Students of mechanics investigate at length the dynamical properties of a system consisting of two or three spinning spheres with homogenous mass distributions gravitationally interacting only with each other. Population biologists study the evolution of one species procreating at a constant (...)
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • Model Organisms.Rachel Ankeny & Sabina Leonelli - 2020 - Cambridge University Press.
    This Element presents a philosophical exploration of the concept of the 'model organism' in contemporary biology. Thinking about model organisms enables us to examine how living organisms have been brought into the laboratory and used to gain a better understanding of biology, and to explore the research practices, commitments, and norms underlying this understanding. We contend that model organisms are key components of a distinctive way of doing research. We focus on what makes model organisms an important type of model, (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)Scientific representation.Mauricio Suárez - 2010 - Philosophy Compass 5 (1):91-101.
    Scientific representation is a currently booming topic, both in analytical philosophy and in history and philosophy of science. The analytical inquiry attempts to come to terms with the relation between theory and world; while historians and philosophers of science aim to develop an account of the practice of model building in the sciences. This article provides a review of recent work within both traditions, and ultimately argues for a practice-based account of the means employed by scientists to effectively achieve representation (...)
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • Modeling without models.Arnon Levy - 2015 - Philosophical Studies 172 (3):781-798.
    Modeling is an important scientific practice, yet it raises significant philosophical puzzles. Models are typically idealized, and they are often explored via imaginative engagement and at a certain “distance” from empirical reality. These features raise questions such as what models are and how they relate to the world. Recent years have seen a growing discussion of these issues, including a number of views that treat modeling in terms of indirect representation and analysis. Indirect views treat the model as a bona (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Idealization and abstraction: refining the distinction.Arnon Levy - 2018 - Synthese 198 (Suppl 24):5855-5872.
    Idealization and abstraction are central concepts in the philosophy of science and in science itself. My goal in this paper is suggest an account of these concepts, building on and refining an existing view due to Jones Idealization XII: correcting the model. Idealization and abstraction in the sciences, vol 86. Rodopi, Amsterdam, pp 173–217, 2005) and Godfrey-Smith Mapping the future of biology: evolving concepts and theories. Springer, Berlin, 2009). On this line of thought, abstraction—which I call, for reasons to be (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • The New Fiction View of Models.Fiora Salis - 2021 - British Journal for the Philosophy of Science 72 (3):717-742.
    How do models represent reality? There are two conditions that scientific models must satisfy to be representations of real systems, the aboutness condition and the epistemic condition. In this article, I critically assess the two main fictionalist theories of models as representations, the indirect fiction view and the direct fiction view, with respect to these conditions. And I develop a novel proposal, what I call ‘the new fiction view of models’. On this view, models are akin to fictional stories; they (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Models and Explanation.Alisa Bokulich - 2017 - In Magnani Lorenzo & Bertolotti Tommaso Wayne (eds.), Springer Handbook of Model-Based Science. Springer. pp. 103-118.
    Detailed examinations of scientific practice have revealed that the use of idealized models in the sciences is pervasive. These models play a central role in not only the investigation and prediction of phenomena, but in their received scientific explanations as well. This has led philosophers of science to begin revising the traditional philosophical accounts of scientific explanation in order to make sense of this practice. These new model-based accounts of scientific explanation, however, raise a number of key questions: Can the (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Deflationary representation, inference, and practice.Mauricio Suárez - 2015 - Studies in History and Philosophy of Science Part A 49 (C):36-47.
    This paper defends the deflationary character of two recent views regarding scientific representation, namely RIG Hughes’ DDI model and the inferential conception. It is first argued that these views’ deflationism is akin to the homonymous position in discussions regarding the nature of truth. There, we are invited to consider the platitudes that the predicate “true” obeys at the level of practice, disregarding any deeper, or more substantive, account of its nature. More generally, for any concept X, a deflationary approach is (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Imagination extended and embedded: artifactual versus fictional accounts of models.Tarja Knuuttila - 2017 - Synthese 198 (Suppl 21):5077-5097.
    This paper presents an artifactual approach to models that also addresses their fictional features. It discusses first the imaginary accounts of models and fiction that set model descriptions apart from imagined-objects, concentrating on the latter :251–268, 2010; Frigg and Nguyen in The Monist 99:225–242, 2016; Godfrey-Smith in Biol Philos 21:725–740, 2006; Philos Stud 143:101–116, 2009). While the imaginary approaches accommodate surrogative reasoning as an important characteristic of scientific modeling, they simultaneously raise difficult questions concerning how the imagined entities are related (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Models, Representation, and Mediation.Tarja Knuuttila - 2005 - Philosophy of Science 72 (5):1260-1271.
    Representation has been one of the main themes in the recent discussion of models. Several authors have argued for a pragmatic approach to representation that takes users and their interpretations into account. It appears to me, however, that this emphasis on representation places excessive limitations on our view of models and their epistemic value. Models should rather be thought of as epistemic artifacts through which we gain knowledge in diverse ways. Approaching models this way stresses their materiality and media-specificity. Focusing (...)
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • (1 other version)Scientific representation.Mauricio Suárez - 2014 - Oxford Bibliographies Online.
    Scientific representation is a booming field nowadays within the philosophy of science, with many papers published regularly on the topic every year, and several yearly conferences and workshops held on related topics. Historically, the topic originates in two different strands in 20th-century philosophy of science. One strand begins in the 1950s, with philosophical interest in the nature of scientific theories. As the received or “syntactic” view gave way to a “semantic” or “structural” conception, representation progressively gained the center stage. Yet, (...)
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • (1 other version)Subsymbolic computation and the chinese room.David J. Chalmers - 1992 - In John Dinsmore (ed.), The Symbolic and Connectionist Paradigms: Closing the Gap. Lawrence Erlbaum. pp. 25--48.
    More than a decade ago, philosopher John Searle started a long-running controversy with his paper “Minds, Brains, and Programs” (Searle, 1980a), an attack on the ambitious claims of artificial intelligence (AI). With his now famous _Chinese Room_ argument, Searle claimed to show that despite the best efforts of AI researchers, a computer could never recreate such vital properties of human mentality as intentionality, subjectivity, and understanding. The AI research program is based on the underlying assumption that all important aspects of (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Informational versus functional theories of scientific representation.Anjan Chakravartty - 2010 - Synthese 172 (2):197-213.
    Recent work in the philosophy of science has generated an apparent conflict between theories attempting to explicate the nature of scientific representation. On one side, there are what one might call 'informational' views, which emphasize objective relations (such as similarity, isomorphism, and homomorphism) between representations (theories, models, simulations, diagrams, etc.) and their target systems. On the other side, there are what one might call 'functional' views, which emphasize cognitive activities performed in connection with these targets, such as interpretation and inference. (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • The ontology of theoretical modelling: models as make-believe.Adam Toon - 2010 - Synthese 172 (2):301-315.
    The descriptions and theoretical laws scientists write down when they model a system are often false of any real system. And yet we commonly talk as if there were objects that satisfy the scientists’ assumptions and as if we may learn about their properties. Many attempt to make sense of this by taking the scientists’ descriptions and theoretical laws to define abstract or fictional entities. In this paper, I propose an alternative account of theoretical modelling that draws upon Kendall Walton’s (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Re-thinking organisms: The impact of databases on model organism biology.Sabina Leonelli & Rachel A. Ankeny - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (1):29-36.
    Community databases have become crucial to the collection, ordering and retrieval of data gathered on model organisms, as well as to the ways in which these data are interpreted and used across a range of research contexts. This paper analyses the impact of community databases on research practices in model organism biology by focusing on the history and current use of four community databases: FlyBase, Mouse Genome Informatics, WormBase and The Arabidopsis Information Resource. We discuss the standards used by the (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Being-in-the-flow: expert coping as beyond both thought and automaticity.Joshua A. Bergamin - 2017 - Phenomenology and the Cognitive Sciences 16 (3):403-424.
    Hubert Dreyfus argues that explicit thought disrupts smooth coping at both the level of everyday tasks and of highly-refined skills. However, Barbara Montero criticises Dreyfus for extending what she calls the ‘principle of automaticity’ from our everyday actions to those of trained experts. In this paper, I defend Dreyfus’ account while refining his phenomenology. I examine the phenomenology of what I call ‘esoteric’ expertise to argue that the explicit thought Montero invokes belongs rather to ‘gaps’ between or above moments of (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • How something can be said about telling more than we can know: On choice blindness and introspection.Petter Johansson, Lars Hall, Sverker Sikström, Betty Tärning & Andreas Lind - 2006 - Consciousness and Cognition 15 (4):673-692.
    The legacy of Nisbett and Wilson’s classic article, Telling More Than We Can Know: Verbal Reports on Mental Processes , is mixed. It is perhaps the most cited article in the recent history of consciousness studies, yet no empirical research program currently exists that continues the work presented in the article. To remedy this, we have introduced an experimental paradigm we call choice blindness [Johansson, P., Hall, L., Sikström, S., & Olsson, A. . Failure to detect mismatches between intention and (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • (1 other version)Ecological-enactive scientific cognition: modeling and material engagement.Giovanni Rolla & Felipe Novaes - 2020 - Phenomenology and the Cognitive Sciences 1:1-19.
    Ecological-enactive approaches to cognition aim to explain cognition in terms of the dynamic coupling between agent and environment. Accordingly, cognition of one’s immediate environment (which is sometimes labeled “basic” cognition) depends on enaction and the picking up of affordances. However, ecological-enactive views supposedly fail to account for what is sometimes called “higher” cognition, i.e., cognition about potentially absent targets, which therefore can only be explained by postulating representational content. This challenge levelled against ecological-enactive approaches highlights a putative explanatory gap between (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Perceptual content and Fregean myth.Ruth G. Millikan - 1991 - Mind 100 (399):439-459.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • (1 other version)Ecological-enactive scientific cognition: modeling and material engagement.Giovanni Rolla & Felipe Novaes - 2022 - Phenomenology and the Cognitive Sciences 21 (3):625-643.
    Ecological-enactive approaches to cognition aim to explain cognition in terms of the dynamic coupling between agent and environment. Accordingly, cognition of one’s immediate environment depends on enaction and the picking up of affordances. However, ecological-enactive views supposedly fail to account for what is sometimes called “higher” cognition, i.e., cognition about potentially absent targets, which therefore can only be explained by postulating representational content. This challenge levelled against ecological-enactive approaches highlights a putative explanatory gap between basic and higher cognition. In this (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • From Models-as-Fictions to Models-as-Tools.Adrian Currie - 2017 - Ergo: An Open Access Journal of Philosophy 4.
    Many accounts of scientific modeling conceive of models as fictions: scientists interact with models in ways analogous to various aesthetic objects. Fictionalists follow most other accounts of modeling by taking them to be revelatory of the actual world in virtue of bearing some resemblance relation to a target system. While such fictionalist accounts capture crucial aspects of modelling practice, they are ill-suited to some design and engineering contexts. Here, models sometimes serve to underwrite design projects whereby real-world targets are constructed. (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Representationalism is a dead end.Guilherme Sanches de Oliveira - 2018 - Synthese 198 (1):209-235.
    Representationalism—the view that scientific modeling is best understood in representational terms—is the received view in contemporary philosophy of science. Contributions to this literature have focused on a number of puzzles concerning the nature of representation and the epistemic role of misrepresentation, without considering whether these puzzles are the product of an inadequate analytical framework. The goal of this paper is to suggest that this possibility should be taken seriously. The argument has two parts, employing the “can’t have” and “don’t need” (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Experimental Side of Modeling.Isabelle F. Peschard & Bas C. Van Fraassen (eds.) - 2018 - Minneapolis: Minnesota Studies in the Philosophy of Science.
    An innovative, multifaceted approach to scientific experiments as designed by and shaped through interaction with the modeling process The role of scientific modeling in mediation between theories and phenomena is a critical topic within the philosophy of science, touching on issues from climate modeling to synthetic models in biology, high energy particle physics, and cognitive sciences. Offering a radically new conception of the role of data in the scientific modeling process as well as a new awareness of the problematic aspects (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)The theoretical practices of physics: philosophical essays.R. I. G. Hughes - 2010 - New York: Oxford University Press.
    R.I.G. Hughes presents a series of eight philosophical essays on the theoretical practices of physics. The first two essays examine these practices as they appear in physicists' treatises (e.g. Newton's Principia and Opticks ) and journal articles (by Einstein, Bohm and Pines, Aharonov and Bohm). By treating these publications as texts, Hughes casts the philosopher of science in the role of critic. This premise guides the following 6 essays which deal with various concerns of philosophy of physics such as laws, (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Seven Myths About the Fiction View of Models.Roman Frigg & James Nguyen - 2021 - In Alejandro Cassini & Juan Redmond (eds.), Models and Idealizations in Science: Artifactual and Fictional Approaches. Springer Verlag. pp. 133-157.
    Roman Frigg and James Nguyen present a detailed statement and defense of the fiction view of scientific models, according to which they are akin to the characters and places of literary fiction. They argue that while some of the criticisms this view has attracted raise legitimate points, others are myths. In this chapter, they first identify and then rebut the following seven myths: that the fiction view regards products of science as falsehoods; that the fiction view holds that models are (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations