Switch to: Citations

Add references

You must login to add references.
  1. Minimal structure explanations, scientific understanding and explanatory depth.Daniel Kostić - 2018 - Perspectives on Science (1):48-67.
    In this paper, I outline a heuristic for thinking about the relation between explanation and understanding that can be used to capture various levels of “intimacy”, between them. I argue that the level of complexity in the structure of explanation is inversely proportional to the level of intimacy between explanation and understanding, i.e. the more complexity the less intimacy. I further argue that the level of complexity in the structure of explanation also affects the explanatory depth in a similar way (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Explanation: a mechanist alternative.William Bechtel & Adele Abrahamsen - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):421-441.
    Explanations in the life sciences frequently involve presenting a model of the mechanism taken to be responsible for a given phenomenon. Such explanations depart in numerous ways from nomological explanations commonly presented in philosophy of science. This paper focuses on three sorts of differences. First, scientists who develop mechanistic explanations are not limited to linguistic representations and logical inference; they frequently employ diagrams to characterize mechanisms and simulations to reason about them. Thus, the epistemic resources for presenting mechanistic explanations are (...)
    Download  
     
    Export citation  
     
    Bookmark   561 citations  
  • The Structure and Confirmation of Evolutionary Theory.Elisabeth A. Lloyd - 1992 - Noûs 26 (1):132-133.
    Download  
     
    Export citation  
     
    Bookmark   241 citations  
  • I—John Dupré: Living Causes.John Dupré - 2013 - Aristotelian Society Supplementary Volume 87 (1):19-37.
    This paper considers the applicability of standard accounts of causation to living systems. In particular it examines critically the increasing tendency to equate causal explanation with the identification of a mechanism. A range of differences between living systems and paradigm mechanisms are identified and discussed. While in principle it might be possible to accommodate an account of mechanism to these features, the attempt to do so risks reducing the idea of a mechanism to vacuity. It is proposed that the solution (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • The Mathematical Power of Epicyclical Astronomy.Norwood Hanson - 1960 - Isis 51 (2):150-158.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Network representation and complex systems.Charles Rathkopf - 2018 - Synthese (1).
    In this article, network science is discussed from a methodological perspective, and two central theses are defended. The first is that network science exploits the very properties that make a system complex. Rather than using idealization techniques to strip those properties away, as is standard practice in other areas of science, network science brings them to the fore, and uses them to furnish new forms of explanation. The second thesis is that network representations are particularly helpful in explaining the properties (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Explanatory Integration Challenges in Evolutionary Systems Biology.Sara Green, Melinda Fagan & Johannes Jaeger - 2015 - Biological Theory 10 (1):18-35.
    Evolutionary systems biology (ESB) aims to integrate methods from systems biology and evolutionary biology to go beyond the current limitations in both fields. This article clarifies some conceptual difficulties of this integration project, and shows how they can be overcome. The main challenge we consider involves the integration of evolutionary biology with developmental dynamics, illustrated with two examples. First, we examine historical tensions between efforts to define general evolutionary principles and articulation of detailed mechanistic explanations of specific traits. Next, these (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Bowtie Structures, Pathway Diagrams, and Topological Explanation.Nicholaos Jones - 2014 - Erkenntnis 79 (5):1135-1155.
    While mechanistic explanation and, to a lesser extent, nomological explanation are well-explored topics in the philosophy of biology, topological explanation is not. Nor is the role of diagrams in topological explanations. These explanations do not appeal to the operation of mechanisms or laws, and extant accounts of the role of diagrams in biological science explain neither why scientists might prefer diagrammatic representations of topological information to sentential equivalents nor how such representations might facilitate important processes of explanatory reasoning unavailable to (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • (1 other version)Análisis estructuralista de las teorías de Hill: una elucidación de explicación en bioquímica.Karina Alleva & Lucía Federico - 2013 - Scientiae Studia 11 (2):333-353.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Topological explanations and robustness in biological sciences.Philippe Huneman - 2010 - Synthese 177 (2):213-245.
    This paper argues that besides mechanistic explanations, there is a kind of explanation that relies upon “topological” properties of systems in order to derive the explanandum as a consequence, and which does not consider mechanisms or causal processes. I first investigate topological explanations in the case of ecological research on the stability of ecosystems. Then I contrast them with mechanistic explanations, thereby distinguishing the kind of realization they involve from the realization relations entailed by mechanistic explanations, and explain how both (...)
    Download  
     
    Export citation  
     
    Bookmark   115 citations  
  • (1 other version)Rethinking mechanistic explanation.Stuart Glennan - 2002 - Proceedings of the Philosophy of Science Association 2002 (3):S342-353.
    Philosophers of science typically associate the causal-mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon's account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex-systems approach avoids certain (...)
    Download  
     
    Export citation  
     
    Bookmark   400 citations  
  • Special Sciences, Conspiracy and the Better Best System Account of Lawhood.Jonathan Cohen & Craig Callender - 2010 - Erkenntnis 73 (3):427 - 447.
    An important obstacle to lawhood in the special sciences is the worry that such laws would require metaphysically extravagant conspiracies among fundamental particles. How, short of conspiracy, is this possible? In this paper we'll review a number of strategies that allow for the projectibility of special science generalizations without positing outlandish conspiracies: non-Humean pluralism, classical MRL theories of laws, and Albert and Loewer's theory. After arguing that none of the above fully succeed, we consider the conspiracy problem through the lens (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Mechanisms and the nature of causation.Stuart S. Glennan - 1996 - Erkenntnis 44 (1):49--71.
    In this paper I offer an analysis of causation based upon a theory of mechanisms-complex systems whose internal parts interact to produce a system's external behavior. I argue that all but the fundamental laws of physics can be explained by reference to mechanisms. Mechanisms provide an epistemologically unproblematic way to explain the necessity which is often taken to distinguish laws from other generalizations. This account of necessity leads to a theory of causation according to which events are causally related when (...)
    Download  
     
    Export citation  
     
    Bookmark   441 citations  
  • Pragmatic laws.Sandra D. Mitchell - 1997 - Philosophy of Science 64 (4):479.
    Beatty, Brandon, and Sober agree that biological generalizations, when contingent, do not qualify as laws. Their conclusion follows from a normative definition of law inherited from the Logical Empiricists. I suggest two additional approaches: paradigmatic and pragmatic. Only the pragmatic represents varying kinds and degrees of contingency and exposes the multiple relationships found among scientific generalizations. It emphasizes the function of laws in grounding expectation and promotes the evaluation of generalizations along continua of ontological and representational parameters. Stability of conditions (...)
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • (1 other version)Studies in the logic of explanation.Carl Gustav Hempel & Paul Oppenheim - 1948 - Philosophy of Science 15 (2):135-175.
    To explain the phenomena in the world of our experience, to answer the question “why?” rather than only the question “what?”, is one of the foremost objectives of all rational inquiry; and especially, scientific research in its various branches strives to go beyond a mere description of its subject matter by providing an explanation of the phenomena it investigates. While there is rather general agreement about this chief objective of science, there exists considerable difference of opinion as to the function (...)
    Download  
     
    Export citation  
     
    Bookmark   716 citations  
  • Thinking about mechanisms.Peter Machamer, Lindley Darden & Carl F. Craver - 2000 - Philosophy of Science 67 (1):1-25.
    The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change.
    Download  
     
    Export citation  
     
    Bookmark   1353 citations  
  • (1 other version)New work for a theory of universals.David K. Lewis - 1983 - Australasian Journal of Philosophy 61 (4):343-377.
    Download  
     
    Export citation  
     
    Bookmark   1582 citations  
  • “Microbiota, symbiosis and individuality summer school” meeting report.Isobel Ronai, Gregor P. Greslehner, Federico Boem, Judith Carlisle, Adrian Stencel, Javier Suárez, Saliha Bayir, Wiebke Bretting, Joana Formosinho, Anna C. Guerrero, William H. Morgan, Cybèle Prigot-Maurice, Salome Rodeck, Marie Vasse, Jacqueline M. Wallis & Oryan Zacks - 2020 - Microbiome 8:117.
    How does microbiota research impact our understanding of biological individuality? We summarize the interdisciplinary summer school on "Microbiota, Symbiosis and Individuality: Conceptual and Philosophical Issues" (July 2019), which was supported by a European Research Council starting grant project "Immunity, DEvelopment, and the Microbiota" (IDEM). The summer school centered around interdisciplinary group work on four facets of microbiota research: holobionts, individuality, causation, and human health. The conceptual discussion of cutting-edge empirical research provided new insights into microbiota and highlights the value of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Scientific explanation as ampliative, specialized embedding: the case of classical genetics.José Díez & Pablo Lorenzano - 2022 - Synthese 200 (6):1-25.
    Explanations in genetics have intriguing aspects to both biologists and philosophers, and there is no account that satisfactorily elucidates such explanations. The aim of this article is to analyze the kind of explanations usually given in Classical (Transmission) Genetics (CG) and to present in detail the application of an account of explanation as ampliative, specialized nomological embedding to elucidate the such explanations. First, we present explanations in CG in the classical format of inferences with the explanans as the premises and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Descriptive understanding and prediction in COVID-19 modelling.Johannes Findl & Javier Suárez - 2021 - History and Philosophy of the Life Sciences 43 (4):1-31.
    COVID-19 has substantially affected our lives during 2020. Since its beginning, several epidemiological models have been developed to investigate the specific dynamics of the disease. Early COVID-19 epidemiological models were purely statistical, based on a curve-fitting approach, and did not include causal knowledge about the disease. Yet, these models had predictive capacity; thus they were used to ground important political decisions, in virtue of the understanding of the dynamics of the pandemic that they offered. This raises a philosophical question about (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Do seasonal microbiome changes affect infection susceptibility, contributing to seasonal disease outbreaks?Adrian Stencel - 2021 - Bioessays 43 (1):2000148.
    The aim of the present paper is to explore whether seasonal outbreaks of infectious diseases may be linked to changes in host microbiomes. This is a very important issue, because one way to have more control over seasonal outbreaks is to understand the factors that underlie them. In this paper, I will evaluate the relevance of the microbiome as one of such factors. The paper is based on two pillars of reasoning. Firstly, on the idea that microbiomes play an important (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The stability of traits conception of the hologenome: An evolutionary account of holobiont individuality.Javier Suárez - 2020 - History and Philosophy of the Life Sciences 42 (1):1-27.
    Bourrat and Griffiths :33, 2018) have recently argued that most of the evidence presented by holobiont defenders to support the thesis that holobionts are evolutionary individuals is not to the point and is not even adequate to discriminate multispecies evolutionary individuals from other multispecies assemblages that would not be considered evolutionary individuals by most holobiont defenders. They further argue that an adequate criterion to distinguish the two categories is fitness alignment, presenting the notion of fitness boundedness as a criterion that (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • General Theory of Topological Explanations and Explanatory Asymmetry.Daniel Kostic - 2020 - Philosophical Transactions of the Royal Society B: Biological Sciences 375 (1796):1-8.
    In this paper, I present a general theory of topological explanations, and illustrate its fruitfulness by showing how it accounts for explanatory asymmetry. My argument is developed in three steps. In the first step, I show what it is for some topological property A to explain some physical or dynamical property B. Based on that, I derive three key criteria of successful topological explanations: a criterion concerning the facticity of topological explanations, i.e. what makes it true of a particular system; (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Explaining the behaviour of random ecological networks: the stability of the microbiome as a case of integrative pluralism.Roger Deulofeu, Javier Suárez & Alberto Pérez-Cervera - 2019 - Synthese 198 (3):2003-2025.
    Explaining the behaviour of ecosystems is one of the key challenges for the biological sciences. Since 2000, new-mechanicism has been the main model to account for the nature of scientific explanation in biology. The universality of the new-mechanist view in biology has been however put into question due to the existence of explanations that account for some biological phenomena in terms of their mathematical properties (mathematical explanations). Supporters of mathematical explanation have argued that the explanation of the behaviour of ecosystems (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Models, theory structure and mechanisms in biochemistry: The case of allosterism.Karina Alleva, José Díez & Lucia Federico - 2017 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 63:1-14.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Scale Dependency and Downward Causation in Biology.Sara Green - 2018 - Philosophy of Science 85 (5):998-1011.
    This paper argues that scale-dependence of physical and biological processes offers resistance to reductionism and has implications that support a specific kind of downward causation. I demonstrate how insights from multiscale modeling can provide a concrete mathematical interpretation of downward causation as boundary conditions for models used to represent processes at lower scales. The autonomy and role of macroscale parameters and higher-level constraints are illustrated through examples of multiscale modeling in physics, developmental biology, and systems biology. Drawing on these examples, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Analysing Network Models to Make Discoveries about Biological Mechanisms.William Bechtel - 2019 - British Journal for the Philosophy of Science 70 (2):459-484.
    Systems biology provides alternatives to the strategies to developing mechanistic explanations traditionally pursued in cell and molecular biology and much discussed in accounts of mechanistic explanation. Rather than starting by identifying a mechanism for a given phenomenon and decomposing it, systems biologists often start by developing cell-wide networks of detected connections between proteins or genes and construe clusters of highly interactive components as potential mechanisms. Using inference strategies such as ‘guilt-by-association’, researchers advance hypotheses about functions performed of these mechanisms. I (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Outlines of a theory of structural explanations.Philippe Huneman - 2018 - Philosophical Studies 175 (3):665-702.
    This paper argues that in some explanations mathematics are playing an explanatory rather than a representational role, and that this feature unifies many types of non-causal or non-mechanistic explanations that some philosophers of science have been recently exploring under various names. After showing how mathematics can play either a representational or an explanatory role by considering two alternative explanations of a same biological pattern—“Bergmann’s rule”—I offer an example of an explanation where the bulk of the explanatory job is done by (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Explanatory Unification.Thomas Bartelborth - 2002 - Synthese 130 (1):91-108.
    Explanations contribute to our understanding of the world byembedding phenomena into general nomic patterns that we recognize in the world. Manyof these patterns are, of course, causal ones, but the declaration as ``causal'' often fails to determinethe explanatory power of the pattern. More important is the systematization capacity and the empiricalcontent of the pattern or theory with respect to explanations. We can specify these parameters moreprecisely within the framework of the structuralist view of theories.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Constraint‐Based Reasoning for Search and Explanation: Strategies for Understanding Variation and Patterns in Biology.Sara Green & Nicholaos Jones - 2016 - Dialectica 70 (3):343-374.
    Life scientists increasingly rely upon abstraction-based modeling and reasoning strategies for understanding biological phenomena. We introduce the notion of constraint-based reasoning as a fruitful tool for conceptualizing some of these developments. One important role of mathematical abstractions is to impose formal constraints on a search space for possible hypotheses and thereby guide the search for plausible causal models. Formal constraints are, however, not only tools for biological explanations but can be explanatory by virtue of clarifying general dependency-relations and patterning between (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Missing Concepts in Natural Selection Theory Reconstructions.Santiago Ginnobili - 2016 - History and Philosophy of the Life Sciences 38 (3):1-33.
    The concept of fitness has generated a lot of discussion in philosophy of biology. There is, however, relative agreement about the need to distinguish at least two uses of the term: ecological fitness on the one hand, and population genetics fitness on the other. The goal of this paper is to give an explication of the concept of ecological fitness by providing a reconstruction of the theory of natural selection in which this concept was framed, that is, based on the (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Living Causes.John Dupré - 2013 - Aristotelian Society Supplementary Volume 87 (1):19-37.
    This paper considers the applicability of standard accounts of causation to living systems. In particular it examines critically the increasing tendency to equate causal explanation with the identification of a mechanism. A range of differences between living systems and paradigm mechanisms are identified and discussed. While in principle it might be possible to accommodate an account of mechanism to these features, the attempt to do so risks reducing the idea of a mechanism to vacuity. It is proposed that the solution (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Equilibrium explanation.Elliott Sober - 1983 - Philosophical Studies 43 (2):201 - 210.
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • The strategy of model-based science.Peter Godfrey-Smith - 2006 - Biology and Philosophy 21 (5):725-740.
    Download  
     
    Export citation  
     
    Bookmark   283 citations  
  • Fashioning descriptive models in biology: Of Worms and wiring diagrams.Rachel A. Ankeny - 2000 - Philosophy of Science 67 (3):272.
    The biological sciences have become increasingly reliant on so-called 'model organisms'. I argue that in this domain, the concept of a descriptive model is essential for understanding scientific practice. Using a case study, I show how such a model was formulated in a preexplanatory context for subsequent use as a prototype from which explanations ultimately may be generated both within the immediate domain of the original model and in additional, related domains. To develop this concept of a descriptive model, I (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Explanatory pluralism in biology.Sara Green - 2016 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 59:154-157.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Development and mechanistic explanation.Fabrizzio Mc Manus - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (2):532-541.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Discussion [on Second Thoughts on Paradigms, and other papers of the conference].T. S. Kuhn - 1974 - In Frederick Suppe (ed.), The Structure of scientific theories. Urbana,: University of Illinois Press.
    Download  
     
    Export citation  
     
    Bookmark   97 citations  
  • Scientific w-Explanation as Ampliative, Specialized Embedding: A Neo-Hempelian Account.José Díez - 2014 - Erkenntnis 79 (S8):1413-1443.
    The goal of this paper is to present and defend an empiricist, neo-Hempelian account of scientific explanation as ampliative, specialized embedding. The proposal aims to preserve what I take to be the core of Hempel’s empiricist account, by weakening it in some respects and strengthening it in others, introducing two new conditions that solve most of Hempel’s problems without abandoning his empiricist strictures. According to this proposal, to explain a phenomenon is to make it expectable by introducing new conceptual/ontological machinery (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Who Got What Wrong? Fodor and Piattelli on Darwin: Guiding Principles and Explanatory Models in Natural Selection.José Díez & Pablo Lorenzano - 2013 - Erkenntnis 78 (5):1143-1175.
    The purpose of this paper is to defend, contra Fodor and Piattelli-Palmarini (F&PP), that the theory of natural selection (NS) is a perfectly bona fide empirical unified explanatory theory. F&PP claim there is nothing non-truistic, counterfactual-supporting, of an “adaptive” character and common to different explanations of trait evolution. In his debate with Fodor, and in other works, Sober defends NS but claims that, compared with classical mechanics (CM) and other standard theories, NS is peculiar in that its explanatory models are (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Development and mechanistic explanation.Fabrizzio Manus - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (2):532-541.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Rethinking Mechanistic Explanation.Lindley Darden - 2002 - Philosophy of Science 69 (S3):342-353.
    Philosophers of science typically associate the causal‐mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon’s account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex‐systems approach avoids certain (...)
    Download  
     
    Export citation  
     
    Bookmark   214 citations  
  • Are natural selection explanatory models a priori?José Díez & Pablo Lorenzano - 2015 - Biology and Philosophy 30 (6):787-809.
    The epistemic status of Natural Selection has seemed intriguing to biologists and philosophers since the very beginning of the theory to our present times. One prominent contemporary example is Elliott Sober, who claims that NS, and some other theories in biology, and maybe in economics, are peculiar in including explanatory models/conditionals that are a priori in a sense in which explanatory models/conditionals in Classical Mechanics and most other standard theories are not. Sober’s argument focuses on some “would promote” sentences that (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Stem cells and systems models: clashing views of explanation.Melinda Bonnie Fagan - 2016 - Synthese 193 (3):873-907.
    This paper examines a case of failed interdisciplinary collaboration, between experimental stem cell research and theoretical systems biology. Recently, two groups of theoretical biologists have proposed dynamical systems models as a basis for understanding stem cells and their distinctive capacities. Experimental stem cell biologists, whose work focuses on manipulation of concrete cells, tissues and organisms, have largely ignored these proposals. I argue that ‘failure to communicate’ in this case is rooted in divergent views of explanation: the theoretically-inclined modelers are committed (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Revisiting “scale-free” networks.Evelyn Fox Keller - 2005 - Bioessays 27 (10):1060-1068.
    Recent observations of power-law distributions in the connectivity of complex networks came as a big surprise to researchers steeped in the tradition of random networks. Even more surprising was the discovery that power-law distributions also characterize many biological and social networks. Many attributed a deep significance to this fact, inferring a “universal architecture” of complex systems. Closer examination, however, challenges the assumptions that (1) such distributions are special and (2) they signify a common architecture, independent of the system's specifics. The (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Philosophical issues in ecology: Recent trends and future directions.Mark Colyvan, William Grey, Paul E. Griffiths, Jay Odenbaugh, Stefan Linquist & Hugh P. Possingham - 2009 - Ecology and Society 14 (2).
    Philosophy of ecology has been slow to become established as an area of philosophical interest, but it is now receiving considerable attention. This area holds great promise for the advancement of both ecology and the philosophy of science. Insights from the philosophy of science can advance ecology in a number of ways. For example, philosophy can assist with the development of improved models of ecological hypothesis testing and theory choice. Philosophy can also help ecologists understand the role and limitations of (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (1 other version)Scientific Explanation and the Causal Structure of the World.Wesley C. Salmon - 1984 - Princeton University Press.
    The philosophical theory of scientific explanation proposed here involves a radically new treatment of causality that accords with the pervasively statistical character of contemporary science. Wesley C. Salmon describes three fundamental conceptions of scientific explanation--the epistemic, modal, and ontic. He argues that the prevailing view (a version of the epistemic conception) is untenable and that the modal conception is scientifically out-dated. Significantly revising aspects of his earlier work, he defends a causal/mechanical theory that is a version of the ontic conception. (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Network analyses in systems biology: new strategies for dealing with biological complexity.Sara Green, Maria Şerban, Raphael Scholl, Nicholaos Jones, Ingo Brigandt & William Bechtel - 2018 - Synthese 195 (4):1751-1777.
    The increasing application of network models to interpret biological systems raises a number of important methodological and epistemological questions. What novel insights can network analysis provide in biology? Are network approaches an extension of or in conflict with mechanistic research strategies? When and how can network and mechanistic approaches interact in productive ways? In this paper we address these questions by focusing on how biological networks are represented and analyzed in a diverse class of case studies. Our examples span from (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Diversifying the picture of explanations in biological sciences: ways of combining topology with mechanisms.Philippe Huneman - 2018 - Synthese 195 (1):115-146.
    Besides mechanistic explanations of phenomena, which have been seriously investigated in the last decade, biology and ecology also include explanations that pinpoint specific mathematical properties as explanatory of the explanandum under focus. Among these structural explanations, one finds topological explanations, and recent science pervasively relies on them. This reliance is especially due to the necessity to model large sets of data with no practical possibility to track the proper activities of all the numerous entities. The paper first defines topological explanations (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (1 other version)Rethinking Mechanistic Explanation.Stuart Glennan - 2002 - Philosophy of Science 69 (S3):S342-S353.
    Philosophers of science typically associate the causal-mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon's account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex-systems approach avoids certain (...)
    Download  
     
    Export citation  
     
    Bookmark   420 citations