Switch to: Citations

Add references

You must login to add references.
  1. Why a Little Bit Goes a Long Way: Logical Foundations of Scientifically Applicable Mathematics.Solomon Feferman - 1992 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1992:442 - 455.
    Does science justify any part of mathematics and, if so, what part? These questions are related to the so-called indispensability arguments propounded, among others, by Quine and Putnam; moreover, both were led to accept significant portions of set theory on that basis. However, set theory rests on a strong form of Platonic realism which has been variously criticized as a foundation of mathematics and is at odds with scientific realism. Recent logical results show that it is possible to directly formalize (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Subsystems of Second Order Arithmetic.Stephen G. Simpson - 1999 - Studia Logica 77 (1):129-129.
    Download  
     
    Export citation  
     
    Bookmark   236 citations  
  • Factorization of polynomials and °1 induction.S. G. Simpson - 1986 - Annals of Pure and Applied Logic 31:289.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Countable algebra and set existence axioms.Harvey M. Friedman - 1983 - Annals of Pure and Applied Logic 25 (2):141.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Periodic points and subsystems of second-order arithmetic.Harvey Friedman, Stephen G. Simpson & Xiaokang Yu - 1993 - Annals of Pure and Applied Logic 62 (1):51-64.
    We study the formalization within sybsystems of second-order arithmetic of theorems concerning periodic points in dynamical systems on the real line. We show that Sharkovsky's theorem is provable in WKL0. We show that, with an additional assumption, Sharkovsky's theorem is provable in RCA0. We show that the existence for all n of n-fold iterates of continuous mappings of the closed unit interval into itself is equivalent to the disjunction of Σ02 induction and weak König's lemma.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Proof-theoretic investigations on Kruskal's theorem.Michael Rathjen & Andreas Weiermann - 1993 - Annals of Pure and Applied Logic 60 (1):49-88.
    In this paper we calibrate the exact proof-theoretic strength of Kruskal's theorem, thereby giving, in some sense, the most elementary proof of Kruskal's theorem. Furthermore, these investigations give rise to ordinal analyses of restricted bar induction.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Measure theory and weak König's lemma.Xiaokang Yu & Stephen G. Simpson - 1990 - Archive for Mathematical Logic 30 (3):171-180.
    We develop measure theory in the context of subsystems of second order arithmetic with restricted induction. We introduce a combinatorial principleWWKL (weak-weak König's lemma) and prove that it is strictly weaker thanWKL (weak König's lemma). We show thatWWKL is equivalent to a formal version of the statement that Lebesgue measure is countably additive on open sets. We also show thatWWKL is equivalent to a formal version of the statement that any Borel measure on a compact metric space is countably additive (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Reverse mathematics: the playground of logic.Richard A. Shore - 2010 - Bulletin of Symbolic Logic 16 (3):378-402.
    This paper is essentially the author's Gödel Lecture at the ASL Logic Colloquium '09 in Sofia extended and supplemented by material from some other papers. After a brief description of traditional reverse mathematics, a computational approach to is presented. There are then discussions of some interactions between reverse mathematics and the major branches of mathematical logic in terms of the techniques they supply as well as theorems for analysis. The emphasis here is on ones that lie outside the usual main (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Reverse mathematics and π21 comprehension.Carl Mummert & Stephen G. Simpson - 2005 - Bulletin of Symbolic Logic 11 (4):526-533.
    We initiate the reverse mathematics of general topology. We show that a certain metrization theorem is equivalent to Π2 1 comprehension. An MF space is defined to be a topological space of the form MF(P) with the topology generated by $\lbrace N_p \mid p \in P \rbrace$ . Here P is a poset, MF(P) is the set of maximal filters on P, and $N_p = \lbrace F \in MF(P) \mid p \in F \rbrace$ . If the poset P is countable, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Ordinal numbers and the Hilbert basis theorem.Stephen G. Simpson - 1988 - Journal of Symbolic Logic 53 (3):961-974.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Systems of predicative analysis.Solomon Feferman - 1964 - Journal of Symbolic Logic 29 (1):1-30.
    This paper is divided into two parts. Part I provides a resumé of the evolution of the notion of predicativity. Part II describes our own work on the subject.Part I§1. Conceptions of sets.Statements about sets lie at the heart of most modern attempts to systematize all (or, at least, all known) mathematics. Technical and philosophical discussions concerning such systematizations and the underlying conceptions have thus occupied a considerable portion of the literature on the foundations of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  • Partial realizations of Hilbert's program.Stephen G. Simpson - 1988 - Journal of Symbolic Logic 53 (2):349-363.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • The prehistory of the subsystems of second-order arithmetic.Walter Dean & Sean Walsh - 2017 - Review of Symbolic Logic 10 (2):357-396.
    This paper presents a systematic study of the prehistory of the traditional subsystems of second-order arithmetic that feature prominently in the reverse mathematics program of Friedman and Simpson. We look in particular at: (i) the long arc from Poincar\'e to Feferman as concerns arithmetic definability and provability, (ii) the interplay between finitism and the formalization of analysis in the lecture notes and publications of Hilbert and Bernays, (iii) the uncertainty as to the constructive status of principles equivalent to Weak K\"onig's (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Which set existence axioms are needed to prove the separable Hahn-Banach theorem?Douglas K. Brown & Stephen G. Simpson - 1986 - Annals of Pure and Applied Logic 31:123-144.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • On the Π1 1 -separation principle.Antonio Montalbán - 2008 - Mathematical Logic Quarterly 54 (6):563-578.
    We study the proof-theoretic strength of the Π11-separation axiom scheme, and we show that Π11-separation lies strictly in between the Δ11-comprehension and Σ11-choice axiom schemes over RCA0.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Π 1 0 Classes, Peano Arithmetic, Randomness, and Computable Domination.David E. Diamondstone, Damir D. Dzhafarov & Robert I. Soare - 2010 - Notre Dame Journal of Formal Logic 51 (1):127-159.
    We present an overview of the topics in the title and of some of the key results pertaining to them. These have historically been topics of interest in computability theory and continue to be a rich source of problems and ideas. In particular, we draw attention to the links and connections between these topics and explore their significance to modern research in the field.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Some conservation results on weak König's lemma.Stephen G. Simpson, Kazuyuki Tanaka & Takeshi Yamazaki - 2002 - Annals of Pure and Applied Logic 118 (1-2):87-114.
    By , we denote the system of second-order arithmetic based on recursive comprehension axioms and Σ10 induction. is defined to be plus weak König's lemma: every infinite tree of sequences of 0's and 1's has an infinite path. In this paper, we first show that for any countable model M of , there exists a countable model M′ of whose first-order part is the same as that of M, and whose second-order part consists of the M-recursive sets and sets not (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Vitali's Theorem and WWKL.Douglas K. Brown, Mariagnese Giusto & Stephen G. Simpson - 2002 - Archive for Mathematical Logic 41 (2):191-206.
    Continuing the investigations of X. Yu and others, we study the role of set existence axioms in classical Lebesgue measure theory. We show that pairwise disjoint countable additivity for open sets of reals is provable in RCA0. We show that several well-known measure-theoretic propositions including the Vitali Covering Theorem are equivalent to WWKL over RCA0.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Open questions in reverse mathematics.Antonio Montalbán - 2011 - Bulletin of Symbolic Logic 17 (3):431-454.
    We present a list of open questions in reverse mathematics, including some relevant background information for each question. We also mention some of the areas of reverse mathematics that are starting to be developed and where interesting open question may be found.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • The Gödel hierarchy and reverse mathematics.Stephen G. Simpson - 2010 - In Kurt Gödel, Solomon Feferman, Charles Parsons & Stephen G. Simpson (eds.), Kurt Gödel: essays for his centennial. Ithaca, NY: Association for Symbolic Logic.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Fundamental notions of analysis in subsystems of second-order arithmetic.Jeremy Avigad - 2006 - Annals of Pure and Applied Logic 139 (1):138-184.
    We develop fundamental aspects of the theory of metric, Hilbert, and Banach spaces in the context of subsystems of second-order arithmetic. In particular, we explore issues having to do with distances, closed subsets and subspaces, closures, bases, norms, and projections. We pay close attention to variations that arise when formalizing definitions and theorems, and study the relationships between them.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Reverse-engineering Reverse Mathematics.Sam Sanders - 2013 - Annals of Pure and Applied Logic 164 (5):528-541.
    An important open problem in Reverse Mathematics is the reduction of the first-order strength of the base theory from IΣ1IΣ1 to IΔ0+expIΔ0+exp. The system ERNA, a version of Nonstandard Analysis based on the system IΔ0+expIΔ0+exp, provides a partial solution to this problem. Indeed, weak Königʼs lemma and many of its equivalent formulations from Reverse Mathematics can be ‘pushed down’ into ERNA, while preserving the equivalences, but at the price of replacing equality with ‘≈’, i.e. infinitesimal proximity . The logical principle (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the strength of two recurrence theorems.Adam R. Day - 2016 - Journal of Symbolic Logic 81 (4):1357-1374.
    Download  
     
    Export citation  
     
    Bookmark   1 citation