Switch to: Citations

Add references

You must login to add references.
  1. The Euclidean Diagram.Kenneth Manders - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press. pp. 80--133.
    This chapter gives a detailed study of diagram-based reasoning in Euclidean plane geometry (Books I, III), as well as an exploration how to characterise a geometric practice. First, an account is given of diagram attribution: basic geometrical claims are classified as exact (equalities, proportionalities) or co-exact (containments, contiguities); exact claims may only be inferred from prior entries in the demonstration text, but co-exact claims may be asserted based on what is seen in the diagram. Diagram control by constructions is necessary (...)
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • Forms and Roles of Diagrams in Knot Theory.Silvia De Toffoli & Valeria Giardino - 2014 - Erkenntnis 79 (4):829-842.
    The aim of this article is to explain why knot diagrams are an effective notation in topology. Their cognitive features and epistemic roles will be assessed. First, it will be argued that different interpretations of a figure give rise to different diagrams and as a consequence various levels of representation for knots will be identified. Second, it will be shown that knot diagrams are dynamic by pointing at the moves which are commonly applied to them. For this reason, experts must (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • The Philosophy of Mathematical Practice.Paolo Mancosu (ed.) - 2008 - Oxford, England: Oxford University Press.
    There is an urgent need in philosophy of mathematics for new approaches which pay closer attention to mathematical practice. This book will blaze the trail: it offers philosophical analyses of important characteristics of contemporary mathematics and of many aspects of mathematical activity which escape purely formal logical treatment.
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • The Shaping of Deduction in Greek Mathematics: A Study in Cognitive History.Reviel Netz - 1999 - Cambridge and New York: Cambridge University Press.
    An examination of the emergence of the phenomenon of deductive argument in classical Greek mathematics.
    Download  
     
    Export citation  
     
    Bookmark   100 citations  
  • Envisioning Transformations – The Practice of Topology.Silvia De Toffoli & Valeria Giardino - 2016 - In Brendan Larvor (ed.), Mathematical Cultures: The London Meetings 2012-2014. Springer International Publishing. pp. 25-50.
    The objective of this article is twofold. First, a methodological issue is addressed. It is pointed out that even if philosophers of mathematics have been recently more and more concerned with the practice of mathematics, there is still a need for a sharp definition of what the targets of a philosophy of mathematical practice should be. Three possible objects of inquiry are put forward: (1) the collective dimension of the practice of mathematics; (2) the cognitives capacities requested to the practitioners; (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Visual Thinking in Mathematics. [REVIEW]Marcus Giaquinto - 2009 - Analysis 69 (2):401-403.
    Our visual experience seems to suggest that no continuous curve can cover every point of the unit square, yet in the late 19th century Giuseppe Peano proved that such a curve exists. Examples like this, particularly in analysis received much attention in the 19th century. They helped to instigate what Hans Hahn called a ‘crisis of intuition’, wherein visual reasoning in mathematics came to be thought to be epistemically problematic. Hahn described this ‘crisis’ as follows : " Mathematicians had for (...)
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • A formal system for euclid’s elements.Jeremy Avigad, Edward Dean & John Mumma - 2009 - Review of Symbolic Logic 2 (4):700--768.
    We present a formal system, E, which provides a faithful model of the proofs in Euclid's Elements, including the use of diagrammatic reasoning.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Engaging science: how to understand its practices philosophically.Joseph Rouse - 1996 - Ithaca: Cornell University Press.
    Summarizing this century's major debates over realism and the rationality of scientific knowledge, Joseph Rouse believes that these disputes oversimplify the ...
    Download  
     
    Export citation  
     
    Bookmark   111 citations  
  • Not by Genes Alone: How Culture Transformed Human Evolution.Peter J. Richerson & Robert Boyd - 2005 - Chicago University Press.
    Acknowledgments 1. Culture Is Essential 2. Culture Exists 3. Culture Evolves 4. Culture Is an Adaptation 5. Culture Is Maladaptive 6. Culture and Genes Coevolve 7. Nothing about Culture Makes Sense except in the Light of Evolution.
    Download  
     
    Export citation  
     
    Bookmark   448 citations  
  • On formal and informal provability.Hannes Leitgeb - 2009 - In Ø. Linnebo O. Bueno (ed.), New Waves in Philosophy of Mathematics. Palgrave-Macmillan. pp. 263--299.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Visual Thinking in Mathematics: An Epistemological Study.Marcus Giaquinto - 2007 - Oxford, England: Oxford University Press.
    Marcus Giaquinto presents an investigation into the different kinds of visual thinking involved in mathematical thought, drawing on work in cognitive psychology, philosophy, and mathematics. He argues that mental images and physical diagrams are rarely just superfluous aids: they are often a means of discovery, understanding, and even proof.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • How to think about informal proofs.Brendan Larvor - 2012 - Synthese 187 (2):715-730.
    It is argued in this study that (i) progress in the philosophy of mathematical practice requires a general positive account of informal proof; (ii) the best candidate is to think of informal proofs as arguments that depend on their matter as well as their logical form; (iii) articulating the dependency of informal inferences on their content requires a redefinition of logic as the general study of inferential actions; (iv) it is a decisive advantage of this conception of logic that it (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Meaning and Demonstration.Matthew Stone & Una Stojnic - 2015 - Review of Philosophy and Psychology 6 (1):69-97.
    In demonstration, speakers use real-world activity both for its practical effects and to help make their points. The demonstrations of origami mathematics, for example, reconfigure pieces of paper by folding, while simultaneously allowing their author to signal geometric inferences. Demonstration challenges us to explain how practical actions can get such precise significance and how this meaning compares with that of other representations. In this paper, we propose an explanation inspired by David Lewis’s characterizations of coordination and scorekeeping in conversation. In (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Diagrams and proofs in analysis.Jessica Carter - 2010 - International Studies in the Philosophy of Science 24 (1):1 – 14.
    This article discusses the role of diagrams in mathematical reasoning in the light of a case study in analysis. In the example presented certain combinatorial expressions were first found by using diagrams. In the published proofs the pictures were replaced by reasoning about permutation groups. This article argues that, even though the diagrams are not present in the published papers, they still play a role in the formulation of the proofs. It is shown that they play a role in concept (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • (1 other version)From Euclidean geometry to knots and nets.Brendan Larvor - 2017 - Synthese:1-22.
    This paper assumes the success of arguments against the view that informal mathematical proofs secure rational conviction in virtue of their relations with corresponding formal derivations. This assumption entails a need for an alternative account of the logic of informal mathematical proofs. Following examination of case studies by Manders, De Toffoli and Giardino, Leitgeb, Feferman and others, this paper proposes a framework for analysing those informal proofs that appeal to the perception or modification of diagrams or to the inspection or (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)From Euclidean geometry to knots and nets.Brendan Larvor - 2019 - Synthese 196 (7):2715-2736.
    This paper assumes the success of arguments against the view that informal mathematical proofs secure rational conviction in virtue of their relations with corresponding formal derivations. This assumption entails a need for an alternative account of the logic of informal mathematical proofs. Following examination of case studies by Manders, De Toffoli and Giardino, Leitgeb, Feferman and others, this paper proposes a framework for analysing those informal proofs that appeal to the perception or modification of diagrams or to the inspection or (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Mathematical Cultures: The London Meetings 2012-2014.Brendan Larvor (ed.) - 2016 - Springer International Publishing.
    This collection presents significant contributions from an international network project on mathematical cultures, including essays from leading scholars in the history and philosophy of mathematics and mathematics education.​ Mathematics has universal standards of validity. Nevertheless, there are local styles in mathematical research and teaching, and great variation in the place of mathematics in the larger cultures that mathematical practitioners belong to. The reflections on mathematical cultures collected in this book are of interest to mathematicians, philosophers, historians, sociologists, cognitive scientists and (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Engaging Science: How to Understand Its Practices Philosophically.Joseph Rouse - 1998 - British Journal for the Philosophy of Science 49 (2):359-364.
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • The Philosophy of Mathematical Practice.Paolo Mancosu - 2009 - Studia Logica 92 (1):137-141.
    Download  
     
    Export citation  
     
    Bookmark   73 citations