Switch to: References

Add citations

You must login to add citations.
  1. Styles of Science and the Pluralist Turn: Between Inclusion and Exclusion.Matteo Vagelli - 2024 - Revue de Synthèse 145 (3-4):325-363.
    This paper aims to map out the links between style and science. Two moments mark the migration of style from the discursive field of the arts to that of the history and philosophy of science: the first occurred in the German-speaking world during the first decades of the twentieth century; the second appeared in an Anglo-American context between the late 1970s and the early 1990s, when the category of style became involved in the so-called “pluralist turn” in the history and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What is Mathematical Rigor?John Burgess & Silvia De Toffoli - 2022 - Aphex 25:1-17.
    Rigorous proof is supposed to guarantee that the premises invoked imply the conclusion reached, and the problem of rigor may be described as that of bringing together the perspectives of formal logic and mathematical practice on how this is to be achieved. This problem has recently raised a lot of discussion among philosophers of mathematics. We survey some possible solutions and argue that failure to understand its terms properly has led to misunderstandings in the literature.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Who's Afraid of Mathematical Diagrams?Silvia De Toffoli - 2023 - Philosophers' Imprint 23 (1).
    Mathematical diagrams are frequently used in contemporary mathematics. They are, however, widely seen as not contributing to the justificatory force of proofs: they are considered to be either mere illustrations or shorthand for non-diagrammatic expressions. Moreover, when they are used inferentially, they are seen as threatening the reliability of proofs. In this paper, I examine certain examples of diagrams that resist this type of dismissive characterization. By presenting two diagrammatic proofs, one from topology and one from algebra, I show that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • What are mathematical diagrams?Silvia De Toffoli - 2022 - Synthese 200 (2):1-29.
    Although traditionally neglected, mathematical diagrams have recently begun to attract attention from philosophers of mathematics. By now, the literature includes several case studies investigating the role of diagrams both in discovery and justification. Certain preliminary questions have, however, been mostly bypassed. What are diagrams exactly? Are there different types of diagrams? In the scholarly literature, the term “mathematical diagram” is used in diverse ways. I propose a working definition that carves out the phenomena that are of most importance for a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Rethinking Logic: Logic in Relation to Mathematics, Evolution, and Method.Carlo Cellucci - 2013 - Dordrecht, Netherland: Springer.
    This volume examines the limitations of mathematical logic and proposes a new approach to logic intended to overcome them. To this end, the book compares mathematical logic with earlier views of logic, both in the ancient and in the modern age, including those of Plato, Aristotle, Bacon, Descartes, Leibniz, and Kant. From the comparison it is apparent that a basic limitation of mathematical logic is that it narrows down the scope of logic confining it to the study of deduction, without (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Bishop's Mathematics: a Philosophical Perspective.Laura Crosilla - forthcoming - In Handbook of Bishop's Mathematics. CUP.
    Errett Bishop's work in constructive mathematics is overwhelmingly regarded as a turning point for mathematics based on intuitionistic logic. It brought new life to this form of mathematics and prompted the development of new areas of research that witness today's depth and breadth of constructive mathematics. Surprisingly, notwithstanding the extensive mathematical progress since the publication in 1967 of Errett Bishop's Foundations of Constructive Analysis, there has been no corresponding advances in the philosophy of constructive mathematics Bishop style. The aim of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Conceptual (and Hence Mathematical) Explanation, Conceptual Grounding and Proof.Francesca Poggiolesi & Francesco Genco - 2021 - Erkenntnis:1-27.
    This paper studies the notions of conceptual grounding and conceptual explanation (which includes the notion of mathematical explanation), with an aim of clarifying the links between them. On the one hand, it analyses complex examples of these two notions that bring to the fore features that are easily overlooked otherwise. On the other hand, it provides a formal framework for modeling both conceptual grounding and conceptual explanation, based on the concept of proof. Inspiration and analogies are drawn with the recent (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Narrow Ontic Counterfactual Account of Distinctively Mathematical Explanation.Mark Povich - 2021 - British Journal for the Philosophy of Science 72 (2):511-543.
    An account of distinctively mathematical explanation (DME) should satisfy three desiderata: it should account for the modal import of some DMEs; it should distinguish uses of mathematics in explanation that are distinctively mathematical from those that are not (Baron [2016]); and it should also account for the directionality of DMEs (Craver and Povich [2017]). Baron’s (forthcoming) deductive-mathematical account, because it is modelled on the deductive-nomological account, is unlikely to satisfy these desiderata. I provide a counterfactual account of DME, the Narrow (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Groundwork for a Fallibilist Account of Mathematics.Silvia De Toffoli - 2021 - Philosophical Quarterly 7 (4):823-844.
    According to the received view, genuine mathematical justification derives from proofs. In this article, I challenge this view. First, I sketch a notion of proof that cannot be reduced to deduction from the axioms but rather is tailored to human agents. Secondly, I identify a tension between the received view and mathematical practice. In some cases, cognitively diligent, well-functioning mathematicians go wrong. In these cases, it is plausible to think that proof sets the bar for justification too high. I then (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Philosophy of Physics.Mario Bacelar Valente - 2012 - History and Philosophy of Science and Technology - EOLSS.
    Philosophy of Physics has emerged recently as a scholarly important subfield of philosophy of science. However outside the small community of experts it is not a well-known field. It is not clear even to experts the exact nature of the field: how much philosophical is it? What is its relation to physics? In this work it is presented an overview of philosophy of physics that tries to answer these and other questions.
    Download  
     
    Export citation  
     
    Bookmark  
  • Proving Quadratic Reciprocity: Explanation, Disagreement, Transparency and Depth.William D’Alessandro - 2020 - Synthese (9):1-44.
    Gauss’s quadratic reciprocity theorem is among the most important results in the history of number theory. It’s also among the most mysterious: since its discovery in the late 18th century, mathematicians have regarded reciprocity as a deeply surprising fact in need of explanation. Intriguingly, though, there’s little agreement on how the theorem is best explained. Two quite different kinds of proof are most often praised as explanatory: an elementary argument that gives the theorem an intuitive geometric interpretation, due to Gauss (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On Euclidean diagrams and geometrical knowledge.Tamires Dal Magro & Manuel J. García-Pérez - 2019 - Theoria. An International Journal for Theory, History and Foundations of Science 34 (2):255.
    We argue against the claim that the employment of diagrams in Euclidean geometry gives rise to gaps in the proofs. First, we argue that it is a mistake to evaluate its merits through the lenses of Hilbert’s formal reconstruction. Second, we elucidate the abilities employed in diagram-based inferences in the Elements and show that diagrams are mathematically reputable tools. Finally, we complement our analysis with a review of recent experimental results purporting to show that, not only is the Euclidean diagram-based (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Reliability of mathematical inference.Jeremy Avigad - 2020 - Synthese 198 (8):7377-7399.
    Of all the demands that mathematics imposes on its practitioners, one of the most fundamental is that proofs ought to be correct. It has been common since the turn of the twentieth century to take correctness to be underwritten by the existence of formal derivations in a suitable axiomatic foundation, but then it is hard to see how this normative standard can be met, given the differences between informal proofs and formal derivations, and given the inherent fragility and complexity of (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • (1 other version)Explanation in mathematics: Proofs and practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11):e12629.
    Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if so, how do (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Word choice in mathematical practice: a case study in polyhedra.Lowell Abrams & Landon D. C. Elkind - 2019 - Synthese (4):1-29.
    We examine the influence of word choices on mathematical practice, i.e. in developing definitions, theorems, and proofs. As a case study, we consider Euclid’s and Euler’s word choices in their influential developments of geometry and, in particular, their use of the term ‘polyhedron’. Then, jumping to the twentieth century, we look at word choices surrounding the use of the term ‘polyhedron’ in the work of Coxeter and of Grünbaum. We also consider a recent and explicit conflict of approach between Grünbaum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A fresh look at research strategies in computational cognitive science: The case of enculturated mathematical problem solving.Regina E. Fabry & Markus Pantsar - 2019 - Synthese 198 (4):3221-3263.
    Marr’s seminal distinction between computational, algorithmic, and implementational levels of analysis has inspired research in cognitive science for more than 30 years. According to a widely-used paradigm, the modelling of cognitive processes should mainly operate on the computational level and be targeted at the idealised competence, rather than the actual performance of cognisers in a specific domain. In this paper, we explore how this paradigm can be adopted and revised to understand mathematical problem solving. The computational-level approach applies methods from (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Proofs Versus Experiments: Wittgensteinian Themes Surrounding the Four-Color Theorem.G. D. Secco - 2017 - In Marcos Silva (ed.), How Colours Matter to Philosophy. Cham: Springer. pp. 289-307.
    The Four-Colour Theorem (4CT) proof, presented to the mathematical community in a pair of papers by Appel and Haken in the late 1970's, provoked a series of philosophical debates. Many conceptual points of these disputes still require some elucidation. After a brief presentation of the main ideas of Appel and Haken’s procedure for the proof and a reconstruction of Thomas Tymoczko’s argument for the novelty of 4CT’s proof, we shall formulate some questions regarding the connections between the points raised by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert, completeness and geometry.Giorgio Venturi - 2011 - Rivista Italiana di Filosofia Analitica Junior 2 (2):80-102.
    This paper aims to show how the mathematical content of Hilbert's Axiom of Completeness consists in an attempt to solve the more general problem of the relationship between intuition and formalization. Hilbert found the accordance between these two sides of mathematical knowledge at a logical level, clarifying the necessary and sufficient conditions for a good formalization of geometry. We will tackle the problem of what is, for Hilbert, the definition of geometry. The solution of this problem will bring out how (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Axiomatizing Changing Conceptions of the Geometric Continuum I: Euclid-Hilbert†.John T. Baldwin - 2018 - Philosophia Mathematica 26 (3):346-374.
    We give a general account of the goals of axiomatization, introducing a variant on Detlefsen’s notion of ‘complete descriptive axiomatization’. We describe how distinctions between the Greek and modern view of number, magnitude, and proportion impact the interpretation of Hilbert’s axiomatization of geometry. We argue, as did Hilbert, that Euclid’s propositions concerning polygons, area, and similar triangles are derivable from Hilbert’s first-order axioms. We argue that Hilbert’s axioms including continuity show much more than the geometrical propositions of Euclid’s theorems and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • An Inquiry into the Practice of Proving in Low-Dimensional Topology.Silvia De Toffoli & Valeria Giardino - 2014 - In Giorgio Venturi, Marco Panza & Gabriele Lolli (eds.), From Logic to Practice: Italian Studies in the Philosophy of Mathematics. Cham: Springer International Publishing. pp. 315-336.
    The aim of this article is to investigate specific aspects connected with visualization in the practice of a mathematical subfield: low-dimensional topology. Through a case study, it will be established that visualization can play an epistemic role. The background assumption is that the consideration of the actual practice of mathematics is relevant to address epistemological issues. It will be shown that in low-dimensional topology, justifications can be based on sequences of pictures. Three theses will be defended. First, the representations used (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • ‘Chasing’ the diagram—the use of visualizations in algebraic reasoning.Silvia de Toffoli - 2017 - Review of Symbolic Logic 10 (1):158-186.
    The aim of this article is to investigate the roles of commutative diagrams (CDs) in a specific mathematical domain, and to unveil the reasons underlying their effectiveness as a mathematical notation; this will be done through a case study. It will be shown that CDs do not depict spatial relations, but represent mathematical structures. CDs will be interpreted as a hybrid notation that goes beyond the traditional bipartition of mathematical representations into diagrammatic and linguistic. It will be argued that one (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Envisioning Transformations – The Practice of Topology.Silvia De Toffoli & Valeria Giardino - 2016 - In Brendan Larvor (ed.), Mathematical Cultures: The London Meetings 2012-2014. Springer International Publishing. pp. 25-50.
    The objective of this article is twofold. First, a methodological issue is addressed. It is pointed out that even if philosophers of mathematics have been recently more and more concerned with the practice of mathematics, there is still a need for a sharp definition of what the targets of a philosophy of mathematical practice should be. Three possible objects of inquiry are put forward: (1) the collective dimension of the practice of mathematics; (2) the cognitives capacities requested to the practitioners; (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Mitä Gödelin epätäydellisyysteoreemoista voidaan päätellä filosofiassa?Markus Pantsar - 2011 - Ajatus 68.
    Tutkin tässä artikkelissa Kurt Gödelin epätäydellisyysteoreemojen tulkintoja filosofiassa. Aihepiiri kattaa valtavan määrän eri tulkintoja tekoälystä fysiikkaan ja runouteen asti. Osoitan, että kriittisesti tarkasteltuna kaikki radikaalit epätäydellisyysteoreemojen sovellukset ovat virheellisiä.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Assessing the “Empirical Philosophy of Mathematics”.Markus Pantsar - 2015 - Discipline Filosofiche:111-130.
    Abstract In the new millennium there have been important empirical developments in the philosophy of mathematics. One of these is the so-called “Empirical Philosophy of Mathematics”(EPM) of Buldt, Löwe, Müller and Müller-Hill, which aims to complement the methodology of the philosophy of mathematics with empirical work. Among other things, this includes surveys of mathematicians, which EPM believes to give philosophically important results. In this paper I take a critical look at the sociological part of EPM as a case study of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Problem with the Dependence of Informal Proofs on Formal Proofs.Fenner Tanswell - 2015 - Philosophia Mathematica 23 (3):295-310.
    Derivationists, those wishing to explain the correctness and rigour of informal proofs in terms of associated formal proofs, are generally held to be supported by the success of the project of translating informal proofs into computer-checkable formal counterparts. I argue, however, that this project is a false friend for the derivationists because there are too many different associated formal proofs for each informal proof, leading to a serious worry of overgeneration. I press this worry primarily against Azzouni's derivation-indicator account, but (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Depth and Clarity * Felix Muhlholzer. Braucht die Mathematik eine Grundlegung? Eine Kommentar des Teils III von Wittgensteins Bemerkungen uber die Grundlagen der Mathematik [Does Mathematics need a Foundation? A Commentary on Part III of Wittgenstein's Remarks on the Foundations of Mathematics]. Frankfurt: Vittorio Klostermann, 2010. ISBN: 978-3-465-03667-8. Pp. xiv + 602. [REVIEW]Juliet Floyd - 2015 - Philosophia Mathematica 23 (2):255-276.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • International Handbook of Research in History, Philosophy and Science Teaching.Michael R. Matthews (ed.) - 2014 - Springer.
    This inaugural handbook documents the distinctive research field that utilizes history and philosophy in investigation of theoretical, curricular and pedagogical issues in the teaching of science and mathematics. It is contributed to by 130 researchers from 30 countries; it provides a logically structured, fully referenced guide to the ways in which science and mathematics education is, informed by the history and philosophy of these disciplines, as well as by the philosophy of education more generally. The first handbook to cover the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Synonymy and Intra-Theoretical Pluralism.Patrick Allo - 2015 - Australasian Journal of Philosophy 93 (1):77-91.
    The starting point of this paper is a version of intra-theoretical pluralism that was recently proposed by Hjortland [2013]. In a first move, I use synonymy-relations to formulate an intuitively compelling objection against Hjortland's claim that, if one uses a single calculus to characterise the consequence relations of the paraconsistent logic LP and the paracomplete logic K3, one immediately obtains multiple consequence relations for a single language and hence a reply to the Quinean charge of meaning variance. In a second (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Invariants and Mathematical Structuralism.Georg Schiemer - 2014 - Philosophia Mathematica 22 (1):70-107.
    The paper outlines a novel version of mathematical structuralism related to invariants. The main objective here is twofold: first, to present a formal theory of structures based on the structuralist methodology underlying work with invariants. Second, to show that the resulting framework allows one to model several typical operations in modern mathematical practice: the comparison of invariants in terms of their distinctive power, the bundling of incomparable invariants to increase their collective strength, as well as a heuristic principle related to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Forms and Roles of Diagrams in Knot Theory.Silvia De Toffoli & Valeria Giardino - 2014 - Erkenntnis 79 (4):829-842.
    The aim of this article is to explain why knot diagrams are an effective notation in topology. Their cognitive features and epistemic roles will be assessed. First, it will be argued that different interpretations of a figure give rise to different diagrams and as a consequence various levels of representation for knots will be identified. Second, it will be shown that knot diagrams are dynamic by pointing at the moves which are commonly applied to them. For this reason, experts must (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Philosophy of mathematics: Making a fresh start.Carlo Cellucci - 2013 - Studies in History and Philosophy of Science Part A 44 (1):32-42.
    The paper distinguishes between two kinds of mathematics, natural mathematics which is a result of biological evolution and artificial mathematics which is a result of cultural evolution. On this basis, it outlines an approach to the philosophy of mathematics which involves a new treatment of the method of mathematics, the notion of demonstration, the questions of discovery and justification, the nature of mathematical objects, the character of mathematical definition, the role of intuition, the role of diagrams in mathematics, and the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A verisimilitudinarian analysis of the Linda paradox.Gustavo Cevolani, Vincenzo Crupi & Roberto Festa - 2012 - VII Conference of the Spanish Society for Logic, Methodology and Philosphy of Science.
    The Linda paradox is a key topic in current debates on the rationality of human reasoning and its limitations. We present a novel analysis of this paradox, based on the notion of verisimilitude as studied in the philosophy of science. The comparison with an alternative analysis based on probabilistic confirmation suggests how to overcome some problems of our account by introducing an adequately defined notion of verisimilitudinarian confirmation.
    Download  
     
    Export citation  
     
    Bookmark  
  • How to think about informal proofs.Brendan Larvor - 2012 - Synthese 187 (2):715-730.
    It is argued in this study that (i) progress in the philosophy of mathematical practice requires a general positive account of informal proof; (ii) the best candidate is to think of informal proofs as arguments that depend on their matter as well as their logical form; (iii) articulating the dependency of informal inferences on their content requires a redefinition of logic as the general study of inferential actions; (iv) it is a decisive advantage of this conception of logic that it (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Informal proofs and mathematical rigour.Marianna Antonutti Marfori - 2010 - Studia Logica 96 (2):261-272.
    The aim of this paper is to provide epistemic reasons for investigating the notions of informal rigour and informal provability. I argue that the standard view of mathematical proof and rigour yields an implausible account of mathematical knowledge, and falls short of explaining the success of mathematical practice. I conclude that careful consideration of mathematical practice urges us to pursue a theory of informal provability.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Mathematical Progress — On Maddy and Beyond.Simon Weisgerber - 2023 - Philosophia Mathematica 31 (1):1-28.
    A key question of the ‘maverick’ tradition of the philosophy of mathematical practice is addressed, namely what is mathematical progress. The investigation is based on an article by Penelope Maddy devoted to this topic in which she considers only contributions ‘of some mathematical importance’ as progress. With the help of a case study from contemporary mathematics, more precisely from tropical geometry, a few issues with her proposal are identified. Taking these issues into consideration, an alternative account of ‘mathematical importance’, broadly (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Kneebone and Lakatos: at the roots of a dialectical philosophy of mathematics.Fenner Tanswell, Brendan Larvor & Colin Jakob Rittberg - forthcoming - Hopos: The Journal of the International Society for the History of Philosophy of Science.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Interest of Philosophy of Mathematics (Education).Karen François - 2024 - Philosophia Mathematica 32 (1):137-142.
    Download  
     
    Export citation  
     
    Bookmark  
  • Russell's Unknown Logicism: A Study in the History and Philosophy of Mathematics.Sébastien Gandon - 2012 - Houndmills, England and New York: Palgrave-Macmillan.
    In this excellent book Sebastien Gandon focuses mainly on Russell's two major texts, Principa Mathematica and Principle of Mathematics, meticulously unpicking the details of these texts and bringing a new interpretation of both the mathematical and the philosophical content. Winner of The Bertrand Russell Society Book Award 2013.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The material reasoning of folding paper.Michael Friedman & Colin Jakob Rittberg - 2021 - Synthese 198 (S26):6333-6367.
    This paper inquires the ways in which paper folding constitutes a mathematical practice and may prompt a mathematical culture. To do this, we first present and investigate the common mathematical activities shared by this culture, i.e. we present mathematical paper folding as a material reasoning practice. We show that the patterns of mathematical activity observed in mathematical paper folding are, at least since the end of the nineteenth century, sufficiently stable to be considered as a practice. Moreover, we will argue (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Proofs and Retributions, Or: Why Sarah Can’t Take Limits.Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz & Mary Schaps - 2015 - Foundations of Science 20 (1):1-25.
    The small, the tiny, and the infinitesimal have been the object of both fascination and vilification for millenia. One of the most vitriolic reviews in mathematics was that written by Errett Bishop about Keisler’s book Elementary Calculus: an Infinitesimal Approach. In this skit we investigate both the argument itself, and some of its roots in Bishop George Berkeley’s criticism of Leibnizian and Newtonian Calculus. We also explore some of the consequences to students for whom the infinitesimal approach is congenial. The (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Ten Misconceptions from the History of Analysis and Their Debunking.Piotr Błaszczyk, Mikhail G. Katz & David Sherry - 2013 - Foundations of Science 18 (1):43-74.
    The widespread idea that infinitesimals were “eliminated” by the “great triumvirate” of Cantor, Dedekind, and Weierstrass is refuted by an uninterrupted chain of work on infinitesimal-enriched number systems. The elimination claim is an oversimplification created by triumvirate followers, who tend to view the history of analysis as a pre-ordained march toward the radiant future of Weierstrassian epsilontics. In the present text, we document distortions of the history of analysis stemming from the triumvirate ideology of ontological minimalism, which identified the continuum (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Carnap’s Early Semantics.Georg Schiemer - 2013 - Erkenntnis 78 (3):487-522.
    This paper concerns Carnap’s early contributions to formal semantics in his work on general axiomatics between 1928 and 1936. Its main focus is on whether he held a variable domain conception of models. I argue that interpreting Carnap’s account in terms of a fixed domain approach fails to describe his premodern understanding of formal models. By drawing attention to the second part of Carnap’s unpublished manuscript Untersuchungen zur allgemeinen Axiomatik, an alternative interpretation of the notions ‘model’, ‘model extension’ and ‘submodel’ (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Mathematics and argumentation.Andrew Aberdein - 2009 - Foundations of Science 14 (1-2):1-8.
    Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematical practice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Comparing Mathematical Explanations.Isaac Wilhelm - 2023 - British Journal for the Philosophy of Science 74 (1):269-290.
    Philosophers have developed several detailed accounts of what makes some mathematical proofs explanatory. Significantly less attention has been paid, however, to what makes some proofs more explanatory than other proofs. That is problematic, since the reasons for thinking that some proofs explain are also reasons for thinking that some proofs are more explanatory than others. So in this paper, I develop an account of comparative explanation in mathematics. I propose a theory of the `at least as explanatory as' relation among (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logic of imagination. Echoes of Cartesian epistemology in contemporary philosophy of mathematics and beyond.David Rabouin - 2018 - Synthese 195 (11):4751-4783.
    Descartes’ Rules for the direction of the mind presents us with a theory of knowledge in which imagination, considered as an “aid” for the intellect, plays a key role. This function of schematization, which strongly resembles key features of Proclus’ philosophy of mathematics, is in full accordance with Descartes’ mathematical practice in later works such as La Géométrie from 1637. Although due to its reliance on a form of geometric intuition, it may sound obsolete, I would like to show that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Volterra Principle Generalized.Tim Räz - 2017 - Philosophy of Science 84 (4):737-760.
    Michael Weisberg and Kenneth Reisman argue that the Volterra Principle can be derived from multiple predator-prey models and that, therefore, the Volterra Principle is a prime example for robustness analysis. In the current article, I give new results regarding the Volterra Principle, extending Weisberg’s and Reisman’s work, and I discuss the consequences of these results for robustness analysis. I argue that we do not end up with multiple, independent models but rather with one general model. I identify the kind of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Abstract Explanations in Science.Christopher Pincock - 2014 - British Journal for the Philosophy of Science 66 (4):857-882.
    This article focuses on a case that expert practitioners count as an explanation: a mathematical account of Plateau’s laws for soap films. I argue that this example falls into a class of explanations that I call abstract explanations.explanations involve an appeal to a more abstract entity than the state of affairs being explained. I show that the abstract entity need not be causally relevant to the explanandum for its features to be explanatorily relevant. However, it remains unclear how to unify (...)
    Download  
     
    Export citation  
     
    Bookmark   81 citations  
  • Gauge symmetry and the Theta vacuum.Richard Healey - 2009 - In Mauricio Suárez, Mauro Dorato & Miklós Rédei (eds.), EPSA Philosophical Issues in the Sciences: Launch of the European Philosophy of Science Association. Dordrecht, Netherland: Springer. pp. 105--116.
    According to conventional wisdom, local gauge symmetry is not a symmetry of nature, but an artifact of how our theories represent nature. But a study of the so-called theta-vacuum appears to refute this view. The ground state of a quantized non-Abelian Yang-Mills gauge theory is characterized by a real-valued, dimensionless parameter theta—a fundamental new constant of nature. The structure of this vacuum state is often said to arise from a degeneracy of the vacuum of the corresponding classical theory, which degeneracy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Three Roles of Empirical Information in Philosophy: Intuitions on Mathematics do Not Come for Free.Deniz Sarikaya, José Antonio Pérez-Escobar & Deborah Kant - 2021 - Kriterion – Journal of Philosophy 35 (3):247-278.
    This work gives a new argument for ‘Empirical Philosophy of Mathematical Practice’. It analyses different modalities on how empirical information can influence philosophical endeavours. We evoke the classical dichotomy between “armchair” philosophy and empirical/experimental philosophy, and claim that the latter should in turn be subdivided in three distinct styles: Apostate speculator, Informed analyst, and Freeway explorer. This is a shift of focus from the source of the information towards its use by philosophers. We present several examples from philosophy of mind/science (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Informal and Absolute Proofs: Some Remarks from a Gödelian Perspective.Gabriella Crocco - 2019 - Topoi 38 (3):561-575.
    After a brief discussion of Kreisel’s notion of informal rigour and Myhill’s notion of absolute proof, Gödel’s analysis of the subject is presented. It is shown how Gödel avoids the notion of informal proof because such a use would contradict one of the senses of “formal” that Gödel wants to preserve. This Gödelian notion of “formal” is directly tied to his notion of absolute proof and to the question of the general applicability of concepts, in a way that overcomes both (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations