Switch to: References

Citations of:

The Philosophy of Mathematical Practice

Oxford, England: Oxford University Press (2008)

Add citations

You must login to add citations.
  1. Duality as a category-theoretic concept.David Corfield - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 59:55-61.
    In a paper published in 1939, Ernest Nagel described the role that projective duality had played in the reformulation of mathematical understanding through the turn of the nineteenth century, claiming that the discovery of the principle of duality had freed mathematicians from the belief that their task was to describe intuitive elements. While instances of duality in mathematics have increased enormously through the twentieth century, philosophers since Nagel have paid little attention to the phenomenon. In this paper I will argue (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Depth and Clarity * Felix Muhlholzer. Braucht die Mathematik eine Grundlegung? Eine Kommentar des Teils III von Wittgensteins Bemerkungen uber die Grundlagen der Mathematik [Does Mathematics need a Foundation? A Commentary on Part III of Wittgenstein's Remarks on the Foundations of Mathematics]. Frankfurt: Vittorio Klostermann, 2010. ISBN: 978-3-465-03667-8. Pp. xiv + 602. [REVIEW]Juliet Floyd - 2015 - Philosophia Mathematica 23 (2):255-276.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • International Handbook of Research in History, Philosophy and Science Teaching.Michael R. Matthews (ed.) - 2014 - Springer.
    This inaugural handbook documents the distinctive research field that utilizes history and philosophy in investigation of theoretical, curricular and pedagogical issues in the teaching of science and mathematics. It is contributed to by 130 researchers from 30 countries; it provides a logically structured, fully referenced guide to the ways in which science and mathematics education is, informed by the history and philosophy of these disciplines, as well as by the philosophy of education more generally. The first handbook to cover the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Proofs and Retributions, Or: Why Sarah Can’t Take Limits.Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz & Mary Schaps - 2015 - Foundations of Science 20 (1):1-25.
    The small, the tiny, and the infinitesimal have been the object of both fascination and vilification for millenia. One of the most vitriolic reviews in mathematics was that written by Errett Bishop about Keisler’s book Elementary Calculus: an Infinitesimal Approach. In this skit we investigate both the argument itself, and some of its roots in Bishop George Berkeley’s criticism of Leibnizian and Newtonian Calculus. We also explore some of the consequences to students for whom the infinitesimal approach is congenial. The (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Argument of Mathematics.Andrew Aberdein & Ian J. Dove (eds.) - 2013 - Dordrecht, Netherland: Springer.
    Written by experts in the field, this volume presents a comprehensive investigation into the relationship between argumentation theory and the philosophy of mathematical practice. Argumentation theory studies reasoning and argument, and especially those aspects not addressed, or not addressed well, by formal deduction. The philosophy of mathematical practice diverges from mainstream philosophy of mathematics in the emphasis it places on what the majority of working mathematicians actually do, rather than on mathematical foundations. -/- The book begins by first challenging the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond. [REVIEW]Mikhail G. Katz & David Sherry - 2013 - Erkenntnis 78 (3):571-625.
    Many historians of the calculus deny significant continuity between infinitesimal calculus of the seventeenth century and twentieth century developments such as Robinson’s theory. Robinson’s hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Ten Misconceptions from the History of Analysis and Their Debunking.Piotr Błaszczyk, Mikhail G. Katz & David Sherry - 2013 - Foundations of Science 18 (1):43-74.
    The widespread idea that infinitesimals were “eliminated” by the “great triumvirate” of Cantor, Dedekind, and Weierstrass is refuted by an uninterrupted chain of work on infinitesimal-enriched number systems. The elimination claim is an oversimplification created by triumvirate followers, who tend to view the history of analysis as a pre-ordained march toward the radiant future of Weierstrassian epsilontics. In the present text, we document distortions of the history of analysis stemming from the triumvirate ideology of ontological minimalism, which identified the continuum (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Carnap’s Early Semantics.Georg Schiemer - 2013 - Erkenntnis 78 (3):487-522.
    This paper concerns Carnap’s early contributions to formal semantics in his work on general axiomatics between 1928 and 1936. Its main focus is on whether he held a variable domain conception of models. I argue that interpreting Carnap’s account in terms of a fixed domain approach fails to describe his premodern understanding of formal models. By drawing attention to the second part of Carnap’s unpublished manuscript Untersuchungen zur allgemeinen Axiomatik, an alternative interpretation of the notions ‘model’, ‘model extension’ and ‘submodel’ (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Is understanding explanatory or objectual?Kareem Khalifa - 2013 - Synthese 190 (6):1153-1171.
    Jonathan Kvanvig has argued that “objectual” understanding, i.e. the understanding we have of a large body of information, cannot be reduced to explanatory concepts. In this paper, I show that Kvanvig fails to establish this point, and then propose a framework for reducing objectual understanding to explanatory understanding.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Mathematical Knowledge and the Interplay of Practices.Jose Ferreiros - 2009 - In Mauricio Suárez, Mauro Dorato & Miklós Rédei (eds.), EPSA Philosophical Issues in the Sciences: Launch of the European Philosophy of Science Association. Dordrecht, Netherland: Springer. pp. 55--64.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Philosophy of mathematics.Leon Horsten - 2008 - Stanford Encyclopedia of Philosophy.
    If mathematics is regarded as a science, then the philosophy of mathematics can be regarded as a branch of the philosophy of science, next to disciplines such as the philosophy of physics and the philosophy of biology. However, because of its subject matter, the philosophy of mathematics occupies a special place in the philosophy of science. Whereas the natural sciences investigate entities that are located in space and time, it is not at all obvious that this is also the case (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • The Epistemological Subject(s) of Mathematics.Silvia De Toffoli - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2880-2904.
    Paying attention to the inner workings of mathematicians has led to a proliferation of new themes in the philosophy of mathematics. Several of these have to do with epistemology. Philosophers of mathematical practice, however, have not (yet) systematically engaged with general (analytic) epistemology. To be sure, there are some exceptions, but they are few and far between. In this chapter, I offer an explanation of why this might be the case and show how the situation could be remedied. I contend (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Szemerédi’s theorem: An exploration of impurity, explanation, and content.Patrick J. Ryan - 2023 - Review of Symbolic Logic 16 (3):700-739.
    In this paper I argue for an association between impurity and explanatory power in contemporary mathematics. This proposal is defended against the ancient and influential idea that purity and explanation go hand-in-hand (Aristotle, Bolzano) and recent suggestions that purity/impurity ascriptions and explanatory power are more or less distinct (Section 1). This is done by analyzing a central and deep result of additive number theory, Szemerédi’s theorem, and various of its proofs (Section 2). In particular, I focus upon the radically impure (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Who's Afraid of Mathematical Diagrams?Silvia De Toffoli - 2023 - Philosophers' Imprint 23 (1).
    Mathematical diagrams are frequently used in contemporary mathematics. They are, however, widely seen as not contributing to the justificatory force of proofs: they are considered to be either mere illustrations or shorthand for non-diagrammatic expressions. Moreover, when they are used inferentially, they are seen as threatening the reliability of proofs. In this paper, I examine certain examples of diagrams that resist this type of dismissive characterization. By presenting two diagrammatic proofs, one from topology and one from algebra, I show that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • What are mathematical diagrams?Silvia De Toffoli - 2022 - Synthese 200 (2):1-29.
    Although traditionally neglected, mathematical diagrams have recently begun to attract attention from philosophers of mathematics. By now, the literature includes several case studies investigating the role of diagrams both in discovery and justification. Certain preliminary questions have, however, been mostly bypassed. What are diagrams exactly? Are there different types of diagrams? In the scholarly literature, the term “mathematical diagram” is used in diverse ways. I propose a working definition that carves out the phenomena that are of most importance for a (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Rethinking Logic: Logic in Relation to Mathematics, Evolution, and Method.Carlo Cellucci - 2013 - Dordrecht, Netherland: Springer.
    This volume examines the limitations of mathematical logic and proposes a new approach to logic intended to overcome them. To this end, the book compares mathematical logic with earlier views of logic, both in the ancient and in the modern age, including those of Plato, Aristotle, Bacon, Descartes, Leibniz, and Kant. From the comparison it is apparent that a basic limitation of mathematical logic is that it narrows down the scope of logic confining it to the study of deduction, without (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Aritmética e conhecimento simbólico: notas sobre o Tractatus Logico-Philosophicus e o ensino de filosofia da matemática.Gisele Dalva Secco - 2020 - Perspectiva Filosófica 47 (2):120-149.
    Departing from and closing with reflections on issues regarding teaching practices of philosophy of mathematics, I propose a comparison between the main features of the Leibnizian notion of symbolic knowledge and some passages from the Tractatus on arithmetic. I argue that this reading allows (i) to shed a new light on the specificities of the Tractarian definition of number, compared to those of Frege and Russell; (ii) to highlight the understanding of the nature of mathematical knowledge as symbolic or formal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Groundwork for a Fallibilist Account of Mathematics.Silvia De Toffoli - 2021 - Philosophical Quarterly 7 (4):823-844.
    According to the received view, genuine mathematical justification derives from proofs. In this article, I challenge this view. First, I sketch a notion of proof that cannot be reduced to deduction from the axioms but rather is tailored to human agents. Secondly, I identify a tension between the received view and mathematical practice. In some cases, cognitively diligent, well-functioning mathematicians go wrong. In these cases, it is plausible to think that proof sets the bar for justification too high. I then (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Cognitive processing of spatial relations in Euclidean diagrams.Yacin Hamami, Milan N. A. van der Kuil, Ineke J. M. van der Ham & John Mumma - 2020 - Acta Psychologica 205:1--10.
    The cognitive processing of spatial relations in Euclidean diagrams is central to the diagram-based geometric practice of Euclid's Elements. In this study, we investigate this processing through two dichotomies among spatial relations—metric vs topological and exact vs co-exact—introduced by Manders in his seminal epistemological analysis of Euclid's geometric practice. To this end, we carried out a two-part experiment where participants were asked to judge spatial relations in Euclidean diagrams in a visual half field task design. In the first part, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Demostraciones «tópicamente puras» en la práctica matemática: un abordaje elucidatorio.Guillermo Nigro Puente - 2020 - Dissertation, Universidad de la República Uruguay
    Download  
     
    Export citation  
     
    Bookmark  
  • Proving Quadratic Reciprocity: Explanation, Disagreement, Transparency and Depth.William D’Alessandro - 2020 - Synthese (9):1-44.
    Gauss’s quadratic reciprocity theorem is among the most important results in the history of number theory. It’s also among the most mysterious: since its discovery in the late 18th century, mathematicians have regarded reciprocity as a deeply surprising fact in need of explanation. Intriguingly, though, there’s little agreement on how the theorem is best explained. Two quite different kinds of proof are most often praised as explanatory: an elementary argument that gives the theorem an intuitive geometric interpretation, due to Gauss (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Word choice in mathematical practice: a case study in polyhedra.Lowell Abrams & Landon D. C. Elkind - 2019 - Synthese (4):1-29.
    We examine the influence of word choices on mathematical practice, i.e. in developing definitions, theorems, and proofs. As a case study, we consider Euclid’s and Euler’s word choices in their influential developments of geometry and, in particular, their use of the term ‘polyhedron’. Then, jumping to the twentieth century, we look at word choices surrounding the use of the term ‘polyhedron’ in the work of Coxeter and of Grünbaum. We also consider a recent and explicit conflict of approach between Grünbaum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A fresh look at research strategies in computational cognitive science: The case of enculturated mathematical problem solving.Regina E. Fabry & Markus Pantsar - 2019 - Synthese 198 (4):3221-3263.
    Marr’s seminal distinction between computational, algorithmic, and implementational levels of analysis has inspired research in cognitive science for more than 30 years. According to a widely-used paradigm, the modelling of cognitive processes should mainly operate on the computational level and be targeted at the idealised competence, rather than the actual performance of cognisers in a specific domain. In this paper, we explore how this paradigm can be adopted and revised to understand mathematical problem solving. The computational-level approach applies methods from (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The material reasoning of folding paper.Michael Friedman & Colin Jakob Rittberg - 2021 - Synthese 198 (S26):6333-6367.
    This paper inquires the ways in which paper folding constitutes a mathematical practice and may prompt a mathematical culture. To do this, we first present and investigate the common mathematical activities shared by this culture, i.e. we present mathematical paper folding as a material reasoning practice. We show that the patterns of mathematical activity observed in mathematical paper folding are, at least since the end of the nineteenth century, sufficiently stable to be considered as a practice. Moreover, we will argue (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hilbert, completeness and geometry.Giorgio Venturi - 2011 - Rivista Italiana di Filosofia Analitica Junior 2 (2):80-102.
    This paper aims to show how the mathematical content of Hilbert's Axiom of Completeness consists in an attempt to solve the more general problem of the relationship between intuition and formalization. Hilbert found the accordance between these two sides of mathematical knowledge at a logical level, clarifying the necessary and sufficient conditions for a good formalization of geometry. We will tackle the problem of what is, for Hilbert, the definition of geometry. The solution of this problem will bring out how (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • ‘Chasing’ the diagram—the use of visualizations in algebraic reasoning.Silvia de Toffoli - 2017 - Review of Symbolic Logic 10 (1):158-186.
    The aim of this article is to investigate the roles of commutative diagrams (CDs) in a specific mathematical domain, and to unveil the reasons underlying their effectiveness as a mathematical notation; this will be done through a case study. It will be shown that CDs do not depict spatial relations, but represent mathematical structures. CDs will be interpreted as a hybrid notation that goes beyond the traditional bipartition of mathematical representations into diagrammatic and linguistic. It will be argued that one (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Mitä Gödelin epätäydellisyysteoreemoista voidaan päätellä filosofiassa?Markus Pantsar - 2011 - Ajatus 68.
    Tutkin tässä artikkelissa Kurt Gödelin epätäydellisyysteoreemojen tulkintoja filosofiassa. Aihepiiri kattaa valtavan määrän eri tulkintoja tekoälystä fysiikkaan ja runouteen asti. Osoitan, että kriittisesti tarkasteltuna kaikki radikaalit epätäydellisyysteoreemojen sovellukset ovat virheellisiä.
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophy of the Matrix.A. C. Paseau - 2017 - Philosophia Mathematica 25 (2):246-267.
    A mathematical matrix is usually defined as a two-dimensional array of scalars. And yet, as I explain, matrices are not in fact two-dimensional arrays. So are we to conclude that matrices do not exist? I show how to resolve the puzzle, for both contemporary and older mathematics. The solution generalises to the interpretation of all mathematical discourse. The paper as a whole attempts to reinforce mathematical structuralism by reflecting on how best to interpret mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • Forms and Roles of Diagrams in Knot Theory.Silvia De Toffoli & Valeria Giardino - 2014 - Erkenntnis 79 (4):829-842.
    The aim of this article is to explain why knot diagrams are an effective notation in topology. Their cognitive features and epistemic roles will be assessed. First, it will be argued that different interpretations of a figure give rise to different diagrams and as a consequence various levels of representation for knots will be identified. Second, it will be shown that knot diagrams are dynamic by pointing at the moves which are commonly applied to them. For this reason, experts must (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • What Are Mathematical Coincidences ?M. Lange - 2010 - Mind 119 (474):307-340.
    Although all mathematical truths are necessary, mathematicians take certain combinations of mathematical truths to be ‘coincidental’, ‘accidental’, or ‘fortuitous’. The notion of a ‘ mathematical coincidence’ has so far failed to receive sufficient attention from philosophers. I argue that a mathematical coincidence is not merely an unforeseen or surprising mathematical result, and that being a misleading combination of mathematical facts is neither necessary nor sufficient for qualifying as a mathematical coincidence. I argue that although the components of a mathematical coincidence (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Three Roles of Empirical Information in Philosophy: Intuitions on Mathematics do Not Come for Free.Deniz Sarikaya, José Antonio Pérez-Escobar & Deborah Kant - 2021 - Kriterion – Journal of Philosophy 35 (3):247-278.
    This work gives a new argument for ‘Empirical Philosophy of Mathematical Practice’. It analyses different modalities on how empirical information can influence philosophical endeavours. We evoke the classical dichotomy between “armchair” philosophy and empirical/experimental philosophy, and claim that the latter should in turn be subdivided in three distinct styles: Apostate speculator, Informed analyst, and Freeway explorer. This is a shift of focus from the source of the information towards its use by philosophers. We present several examples from philosophy of mind/science (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Practical reasoning and the witnessably rigorous proof.Eric Livingston - 2020 - Synthese 199 (1-2):2277-2291.
    This paper introduces an anthropological approach to the foundations of mathematics. Traditionally, the philosophy of mathematics has focused on the nature and origins of mathematical truth. Mathematicians, however, treat mathematical arguments as determining mathematical truth: if an argument is found to describe a witnessably rigorous proof of a theorem, that theorem is considered—until the need for further examination arises—to be true. The anthropological question is how mathematicians, as a practical matter and as a matter of mathematical practice, make such determinations. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Russell's Unknown Logicism: A Study in the History and Philosophy of Mathematics.Sébastien Gandon - 2012 - Houndmills, England and New York: Palgrave-Macmillan.
    In this excellent book Sebastien Gandon focuses mainly on Russell's two major texts, Principa Mathematica and Principle of Mathematics, meticulously unpicking the details of these texts and bringing a new interpretation of both the mathematical and the philosophical content. Winner of The Bertrand Russell Society Book Award 2013.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Proofs Versus Experiments: Wittgensteinian Themes Surrounding the Four-Color Theorem.G. D. Secco - 2017 - In Marcos Silva (ed.), How Colours Matter to Philosophy. Cham: Springer. pp. 289-307.
    The Four-Colour Theorem (4CT) proof, presented to the mathematical community in a pair of papers by Appel and Haken in the late 1970's, provoked a series of philosophical debates. Many conceptual points of these disputes still require some elucidation. After a brief presentation of the main ideas of Appel and Haken’s procedure for the proof and a reconstruction of Thomas Tymoczko’s argument for the novelty of 4CT’s proof, we shall formulate some questions regarding the connections between the points raised by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Inquiry into the Practice of Proving in Low-Dimensional Topology.Silvia De Toffoli & Valeria Giardino - 2014 - In Giorgio Venturi, Marco Panza & Gabriele Lolli (eds.), From Logic to Practice: Italian Studies in the Philosophy of Mathematics. Cham: Springer International Publishing. pp. 315-336.
    The aim of this article is to investigate specific aspects connected with visualization in the practice of a mathematical subfield: low-dimensional topology. Through a case study, it will be established that visualization can play an epistemic role. The background assumption is that the consideration of the actual practice of mathematics is relevant to address epistemological issues. It will be shown that in low-dimensional topology, justifications can be based on sequences of pictures. Three theses will be defended. First, the representations used (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • A Problem with the Dependence of Informal Proofs on Formal Proofs.Fenner Tanswell - 2015 - Philosophia Mathematica 23 (3):295-310.
    Derivationists, those wishing to explain the correctness and rigour of informal proofs in terms of associated formal proofs, are generally held to be supported by the success of the project of translating informal proofs into computer-checkable formal counterparts. I argue, however, that this project is a false friend for the derivationists because there are too many different associated formal proofs for each informal proof, leading to a serious worry of overgeneration. I press this worry primarily against Azzouni's derivation-indicator account, but (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Mathematics Dealing with 'Hypothetical States of Things'.Jessica Carter - 2014 - Philosophia Mathematica 22 (2):209-230.
    This paper takes as a starting point certain notions from Peirce's writings and uses them to propose a picture of the part of mathematical practice that consists of hypothesis formation. In particular, three processes of hypothesis formation are considered: abstraction, generalisation, and an abductive-like inference. In addition Peirce's pragmatic conception of truth and existence in terms of higher-order concepts are used in order to obtain a kind of pragmatic realist picture of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mathematics and argumentation.Andrew Aberdein - 2009 - Foundations of Science 14 (1-2):1-8.
    Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematical practice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On Euclidean diagrams and geometrical knowledge.Tamires Dal Magro & Manuel J. García-Pérez - 2019 - Theoria. An International Journal for Theory, History and Foundations of Science 34 (2):255.
    We argue against the claim that the employment of diagrams in Euclidean geometry gives rise to gaps in the proofs. First, we argue that it is a mistake to evaluate its merits through the lenses of Hilbert’s formal reconstruction. Second, we elucidate the abilities employed in diagram-based inferences in the Elements and show that diagrams are mathematically reputable tools. Finally, we complement our analysis with a review of recent experimental results purporting to show that, not only is the Euclidean diagram-based (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Axiomatizing Changing Conceptions of the Geometric Continuum I: Euclid-Hilbert†.John T. Baldwin - 2018 - Philosophia Mathematica 26 (3):346-374.
    We give a general account of the goals of axiomatization, introducing a variant on Detlefsen’s notion of ‘complete descriptive axiomatization’. We describe how distinctions between the Greek and modern view of number, magnitude, and proportion impact the interpretation of Hilbert’s axiomatization of geometry. We argue, as did Hilbert, that Euclid’s propositions concerning polygons, area, and similar triangles are derivable from Hilbert’s first-order axioms. We argue that Hilbert’s axioms including continuity show much more than the geometrical propositions of Euclid’s theorems and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Philosophy of mathematical practice: A primer for mathematics educators.Yacin Hamami & Rebecca Morris - 2020 - ZDM Mathematics Education 52:1113–1126.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Deductive Nomological Model and Mathematics: Making Dissatisfaction more Satisfactory.Daniele Molinini - 2014 - Theoria 29 (2):223-241.
    The discussion on mathematical explanation has inherited the same sense of dissatisfaction that philosophers of science expressed, in the context of scientific explanation, towards the deductive-nomological model. This model is regarded as unable to cover cases of bona fide mathematical explanations and, furthermore, it is largely ignored in the relevant literature. Surprisingly, the reasons for this ostracism are not sufficiently manifest. In this paper I explore a possible extension of the model to the case of mathematical explanations and I claim (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Envisioning Transformations – The Practice of Topology.Silvia De Toffoli & Valeria Giardino - 2016 - In Brendan Larvor (ed.), Mathematical Cultures: The London Meetings 2012-2014. Springer International Publishing. pp. 25-50.
    The objective of this article is twofold. First, a methodological issue is addressed. It is pointed out that even if philosophers of mathematics have been recently more and more concerned with the practice of mathematics, there is still a need for a sharp definition of what the targets of a philosophy of mathematical practice should be. Three possible objects of inquiry are put forward: (1) the collective dimension of the practice of mathematics; (2) the cognitives capacities requested to the practitioners; (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The concept of “character” in Dirichlet’s theorem on primes in an arithmetic progression.Jeremy Avigad & Rebecca Morris - 2014 - Archive for History of Exact Sciences 68 (3):265-326.
    In 1837, Dirichlet proved that there are infinitely many primes in any arithmetic progression in which the terms do not all share a common factor. We survey implicit and explicit uses ofDirichlet characters in presentations of Dirichlet’s proof in the nineteenth and early twentieth centuries, with an eye toward understanding some of the pragmatic pressures that shaped the evolution of modern mathematical method.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Logic of imagination. Echoes of Cartesian epistemology in contemporary philosophy of mathematics and beyond.David Rabouin - 2018 - Synthese 195 (11):4751-4783.
    Descartes’ Rules for the direction of the mind presents us with a theory of knowledge in which imagination, considered as an “aid” for the intellect, plays a key role. This function of schematization, which strongly resembles key features of Proclus’ philosophy of mathematics, is in full accordance with Descartes’ mathematical practice in later works such as La Géométrie from 1637. Although due to its reliance on a form of geometric intuition, it may sound obsolete, I would like to show that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Volterra Principle Generalized.Tim Räz - 2017 - Philosophy of Science 84 (4):737-760.
    Michael Weisberg and Kenneth Reisman argue that the Volterra Principle can be derived from multiple predator-prey models and that, therefore, the Volterra Principle is a prime example for robustness analysis. In the current article, I give new results regarding the Volterra Principle, extending Weisberg’s and Reisman’s work, and I discuss the consequences of these results for robustness analysis. I argue that we do not end up with multiple, independent models but rather with one general model. I identify the kind of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Frege, Dedekind, and the Origins of Logicism.Erich H. Reck - 2013 - History and Philosophy of Logic 34 (3):242-265.
    This paper has a two-fold objective: to provide a balanced, multi-faceted account of the origins of logicism; to rehabilitate Richard Dedekind as a main logicist. Logicism should be seen as more deeply rooted in the development of modern mathematics than typically assumed, and this becomes evident by reconsidering Dedekind's writings in relation to Frege's. Especially in its Dedekindian and Fregean versions, logicism constitutes the culmination of the rise of ?pure mathematics? in the nineteenth century; and this rise brought with it (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Philosophy of mathematics: Making a fresh start.Carlo Cellucci - 2013 - Studies in History and Philosophy of Science Part A 44 (1):32-42.
    The paper distinguishes between two kinds of mathematics, natural mathematics which is a result of biological evolution and artificial mathematics which is a result of cultural evolution. On this basis, it outlines an approach to the philosophy of mathematics which involves a new treatment of the method of mathematics, the notion of demonstration, the questions of discovery and justification, the nature of mathematical objects, the character of mathematical definition, the role of intuition, the role of diagrams in mathematics, and the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Measuring the Size of Infinite Collections of Natural Numbers: Was Cantor’s Theory of Infinite Number Inevitable?Paolo Mancosu - 2009 - Review of Symbolic Logic 2 (4):612-646.
    Cantor’s theory of cardinal numbers offers a way to generalize arithmetic from finite sets to infinite sets using the notion of one-to-one association between two sets. As is well known, all countable infinite sets have the same ‘size’ in this account, namely that of the cardinality of the natural numbers. However, throughout the history of reflections on infinity another powerful intuition has played a major role: if a collectionAis properly included in a collectionBthen the ‘size’ ofAshould be less than the (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations