Switch to: Citations

Add references

You must login to add references.
  1. Simultaneous stationary reflection and square sequences.Yair Hayut & Chris Lambie-Hanson - 2017 - Journal of Mathematical Logic 17 (2):1750010.
    We investigate the relationship between weak square principles and simultaneous reflection of stationary sets.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (2 other versions)Set Theory.Thomas Jech - 1999 - Studia Logica 63 (2):300-300.
    Download  
     
    Export citation  
     
    Bookmark   330 citations  
  • The fine structure of the constructible hierarchy.R. Björn Jensen - 1972 - Annals of Mathematical Logic 4 (3):229.
    Download  
     
    Export citation  
     
    Bookmark   270 citations  
  • (2 other versions)Squares, scales and stationary reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (01):35-98.
    Since the work of Gödel and Cohen, which showed that Hilbert's First Problem was independent of the usual assumptions of mathematics, there have been a myriad of independence results in many areas of mathematics. These results have led to the systematic study of several combinatorial principles that have proven effective at settling many of the important independent statements. Among the most prominent of these are the principles diamond and square discovered by Jensen. Simultaneously, attempts have been made to find suitable (...)
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • Strongly unfoldable cardinals made indestructible.Thomas A. Johnstone - 2008 - Journal of Symbolic Logic 73 (4):1215-1248.
    I provide indestructibility results for large cardinals consistent with V = L, such as weakly compact, indescribable and strongly unfoldable cardinals. The Main Theorem shows that any strongly unfoldable cardinal κ can be made indestructible by <κ-closed. κ-proper forcing. This class of posets includes for instance all <κ-closed posets that are either κ -c.c, or ≤κ-strategically closed as well as finite iterations of such posets. Since strongly unfoldable cardinals strengthen both indescribable and weakly compact cardinals, the Main Theorem therefore makes (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The lottery preparation.Joel David Hamkins - 2000 - Annals of Pure and Applied Logic 101 (2-3):103-146.
    The lottery preparation, a new general kind of Laver preparation, works uniformly with supercompact cardinals, strongly compact cardinals, strong cardinals, measurable cardinals, or what have you. And like the Laver preparation, the lottery preparation makes these cardinals indestructible by various kinds of further forcing. A supercompact cardinal κ, for example, becomes fully indestructible by <κ-directed closed forcing; a strong cardinal κ becomes indestructible by κ-strategically closed forcing; and a strongly compact cardinal κ becomes indestructible by, among others, the forcing to (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Generic embeddings associated to an indestructibly weakly compact cardinal.Gunter Fuchs - 2010 - Annals of Pure and Applied Logic 162 (1):89-105.
    I use generic embeddings induced by generic normal measures on that can be forced to exist if κ is an indestructibly weakly compact cardinal. These embeddings can be applied in order to obtain the forcing axioms in forcing extensions. This has consequences in : The Singular Cardinal Hypothesis holds above κ, and κ has a useful Jónsson-like property. This in turn implies that the countable tower works much like it does when κ is a Woodin limit of Woodin cardinals. One (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bounded forcing axioms as principles of generic absoluteness.Joan Bagaria - 2000 - Archive for Mathematical Logic 39 (6):393-401.
    We show that Bounded Forcing Axioms (for instance, Martin's Axiom, the Bounded Proper Forcing Axiom, or the Bounded Martin's Maximum) are equivalent to principles of generic absoluteness, that is, they assert that if a $\Sigma_1$ sentence of the language of set theory with parameters of small transitive size is forceable, then it is true. We also show that Bounded Forcing Axioms imply a strong form of generic absoluteness for projective sentences, namely, if a $\Sigma^1_3$ sentence with parameters is forceable, then (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • The subcompleteness of Magidor forcing.Gunter Fuchs - 2018 - Archive for Mathematical Logic 57 (3-4):273-284.
    It is shown that the Magidor forcing to collapse the cofinality of a measurable cardinal that carries a length \ sequence of normal ultrafilters, increasing in the Mitchell order, to \, is subcomplete.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Bounded forcing axioms and the continuum.David Asperó & Joan Bagaria - 2001 - Annals of Pure and Applied Logic 109 (3):179-203.
    We show that bounded forcing axioms are consistent with the existence of -gaps and thus do not imply the Open Coloring Axiom. They are also consistent with Jensen's combinatorial principles for L at the level ω2, and therefore with the existence of an ω2-Suslin tree. We also show that the axiom we call BMM3 implies 21=2, as well as a stationary reflection principle which has many of the consequences of Martin's Maximum for objects of size 2. Finally, we give an (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Generic Vopěnka’s Principle, remarkable cardinals, and the weak Proper Forcing Axiom.Joan Bagaria, Victoria Gitman & Ralf Schindler - 2017 - Archive for Mathematical Logic 56 (1-2):1-20.
    We introduce and study the first-order Generic Vopěnka’s Principle, which states that for every definable proper class of structures C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document} of the same type, there exist B≠A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\ne A$$\end{document} in C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document} such that B elementarily embeds into A in some set-forcing extension. We show that, for n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)Proper forcing and remarkable cardinals.Ralf-Dieter Schindler - 2000 - Bulletin of Symbolic Logic 6 (2):176-184.
    The present paper investigates the power of proper forcings to change the shape of the universe, in a certain well-defined respect. It turns out that the ranking among large cardinals can be used as a measure for that power. However, in order to establish the final result I had to isolate a new large cardinal concept, which I dubbed “remarkability.” Let us approach the exact formulation of the problem—and of its solution—at a slow pace.Breathtaking developments in the mid 1980s found (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Restrictions on forcings that change cofinalities.Yair Hayut & Asaf Karagila - 2016 - Archive for Mathematical Logic 55 (3-4):373-384.
    In this paper we investigate some properties of forcing which can be considered “nice” in the context of singularizing regular cardinals to have an uncountable cofinality. We show that such forcing which changes cofinality of a regular cardinal, cannot be too nice and must cause some “damage” to the structure of cardinals and stationary sets. As a consequence there is no analogue to the Prikry forcing, in terms of “nice” properties, when changing cofinalities to be uncountable.
    Download  
     
    Export citation  
     
    Bookmark   4 citations