Switch to: Citations

Add references

You must login to add references.
  1. Set mapping reflection.Justin Tatch Moore - 2005 - Journal of Mathematical Logic 5 (1):87-97.
    In this note we will discuss a new reflection principle which follows from the Proper Forcing Axiom. The immediate purpose will be to prove that the bounded form of the Proper Forcing Axiom implies both that 2ω = ω2 and that [Formula: see text] satisfies the Axiom of Choice. It will also be demonstrated that this reflection principle implies that □ fails for all regular κ > ω1.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • The fine structure of the constructible hierarchy.R. Björn Jensen - 1972 - Annals of Mathematical Logic 4 (3):229.
    Download  
     
    Export citation  
     
    Bookmark   270 citations  
  • Set Theory. An Introduction to Independence Proofs.James E. Baumgartner & Kenneth Kunen - 1986 - Journal of Symbolic Logic 51 (2):462.
    Download  
     
    Export citation  
     
    Bookmark   150 citations  
  • C(n)-cardinals.Joan Bagaria - 2012 - Archive for Mathematical Logic 51 (3-4):213-240.
    For each natural number n, let C(n) be the closed and unbounded proper class of ordinals α such that Vα is a Σn elementary substructure of V. We say that κ is a C(n)-cardinal if it is the critical point of an elementary embedding j : V → M, M transitive, with j(κ) in C(n). By analyzing the notion of C(n)-cardinal at various levels of the usual hierarchy of large cardinal principles we show that, starting at the level of superstrong (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • A simple maximality principle.Joel Hamkins - 2003 - Journal of Symbolic Logic 68 (2):527-550.
    In this paper, following an idea of Christophe Chalons. I propose a new kind of forcing axiom, the Maximality Principle, which asserts that any sentence varphi holding in some forcing extension $V^P$ and all subsequent extensions $V^{P\ast Q}$ holds already in V. It follows, in fact, that such sentences must also hold in all forcing extensions of V. In modal terms, therefore, the Maximality Principle is expressed by the scheme $(\lozenge \square \varphi) \Rightarrow \square \varphi$ , and is equivalent to (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Subcomplete forcing, trees, and generic absoluteness.Gunter Fuchs & Kaethe Minden - 2018 - Journal of Symbolic Logic 83 (3):1282-1305.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Bounded forcing axioms as principles of generic absoluteness.Joan Bagaria - 2000 - Archive for Mathematical Logic 39 (6):393-401.
    We show that Bounded Forcing Axioms (for instance, Martin's Axiom, the Bounded Proper Forcing Axiom, or the Bounded Martin's Maximum) are equivalent to principles of generic absoluteness, that is, they assert that if a $\Sigma_1$ sentence of the language of set theory with parameters of small transitive size is forceable, then it is true. We also show that Bounded Forcing Axioms imply a strong form of generic absoluteness for projective sentences, namely, if a $\Sigma^1_3$ sentence with parameters is forceable, then (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Hierarchies of resurrection axioms.Gunter Fuchs - 2018 - Journal of Symbolic Logic 83 (1):283-325.
    I analyze the hierarchies of the bounded resurrection axioms and their “virtual” versions, the virtual bounded resurrection axioms, for several classes of forcings. I analyze these axioms in terms of implications and consistency strengths. For the virtual hierarchies, I provide level-by-level equiconsistencies with an appropriate hierarchy of virtual partially super-extendible cardinals. I show that the boldface resurrection axioms for subcomplete or countably closed forcing imply the failure of Todorčević’s square at the appropriate level. I also establish connections between these hierarchies (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal.W. Hugh Woodin - 2002 - Bulletin of Symbolic Logic 8 (1):91-93.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • The subcompleteness of Magidor forcing.Gunter Fuchs - 2018 - Archive for Mathematical Logic 57 (3-4):273-284.
    It is shown that the Magidor forcing to collapse the cofinality of a measurable cardinal that carries a length \ sequence of normal ultrafilters, increasing in the Mitchell order, to \, is subcomplete.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Hierarchies of forcing axioms, the continuum hypothesis and square principles.Gunter Fuchs - 2018 - Journal of Symbolic Logic 83 (1):256-282.
    I analyze the hierarchies of the bounded and the weak bounded forcing axioms, with a focus on their versions for the class of subcomplete forcings, in terms of implications and consistency strengths. For the weak hierarchy, I provide level-by-level equiconsistencies with an appropriate hierarchy of partially remarkable cardinals. I also show that the subcomplete forcing axiom implies Larson’s ordinal reflection principle atω2, and that its effect on the failure of weak squares is very similar to that of Martin’s Maximum.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Closed maximality principles: implications, separations and combinations.Gunter Fuchs - 2008 - Journal of Symbolic Logic 73 (1):276-308.
    l investigate versions of the Maximality Principles for the classes of forcings which are <κ-closed. <κ-directed-closed, or of the form Col (κ. <Λ). These principles come in many variants, depending on the parameters which are allowed. I shall write MPΓ(A) for the maximality principle for forcings in Γ, with parameters from A. The main results of this paper are: • The principles have many consequences, such as <κ-closed-generic $\Sigma _{2}^{1}(H_{\kappa})$ absoluteness, and imply. e.g., that ◇κ holds. I give an application (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Set-theoretic geology.Gunter Fuchs, Joel David Hamkins & Jonas Reitz - 2015 - Annals of Pure and Applied Logic 166 (4):464-501.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • The bounded proper forcing axiom.Martin Goldstern & Saharon Shelah - 1995 - Journal of Symbolic Logic 60 (1):58-73.
    The bounded proper forcing axiom BPFA is the statement that for any family of ℵ 1 many maximal antichains of a proper forcing notion, each of size ℵ 1 , there is a directed set meeting all these antichains. A regular cardinal κ is called Σ 1 -reflecting, if for any regular cardinal χ, for all formulas $\varphi, "H(\chi) \models`\varphi'"$ implies " $\exists\delta . We investigate several algebraic consequences of BPFA, and we show that the consistency strength of the bounded (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Closure properties of parametric subcompleteness.Gunter Fuchs - 2018 - Archive for Mathematical Logic 57 (7-8):829-852.
    For an ordinal \, I introduce a variant of the notion of subcompleteness of a forcing poset, which I call \-subcompleteness, and show that this class of forcings enjoys some closure properties that the original class of subcomplete forcings does not seem to have: factors of \-subcomplete forcings are \-subcomplete, and if \ and \ are forcing-equivalent notions, then \ is \-subcomplete iff \ is. I formulate a Two Step Theorem for \-subcompleteness and prove an RCS iteration theorem for \-subcompleteness (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The downward directed grounds hypothesis and very large cardinals.Toshimichi Usuba - 2017 - Journal of Mathematical Logic 17 (2):1750009.
    A transitive model M of ZFC is called a ground if the universe V is a set forcing extension of M. We show that the grounds ofV are downward set-directed. Consequently, we establish some fundamental theorems on the forcing method and the set-theoretic geology. For instance, the mantle, the intersection of all grounds, must be a model of ZFC. V has only set many grounds if and only if the mantle is a ground. We also show that if the universe (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The Ground Axiom.Jonas Reitz - 2007 - Journal of Symbolic Logic 72 (4):1299 - 1317.
    A new axiom is proposed, the Ground Axiom, asserting that the universe is not a nontrivial set forcing extension of any inner model. The Ground Axiom is first-order expressible, and any model of ZFC has a class forcing extension which satisfies it. The Ground Axiom is independent of many well-known set-theoretic assertions including the Generalized Continuum Hypothesis, the assertion V=HOD that every set is ordinal definable, and the existence of measurable and supercompact cardinals. The related Bedrock Axiom, asserting that the (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations