Switch to: Citations

Add references

You must login to add references.
  1. Algebraizable Logics.W. J. Blok & Don Pigozzi - 2022 - Advanced Reasoning Forum.
    W. J. Blok and Don Pigozzi set out to try to answer the question of what it means for a logic to have algebraic semantics. In this seminal book they transformed the study of algebraic logic by giving a general framework for the study of logics by algebraic means. The Dutch mathematician W. J. Blok (1947-2003) received his doctorate from the University of Amsterdam in 1979 and was Professor of Mathematics at the University of Illinois, Chicago until his death in (...)
    Download  
     
    Export citation  
     
    Bookmark   137 citations  
  • Protoalgebraic Logics.Janusz Czelakowski - 2001 - Kluwer Academic Publishers.
    This book is both suitable for logically and algebraically minded graduate and advanced graduate students of mathematics, computer science and philosophy, and ...
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Definitional equivalence and algebraizability of generalized logical systems.Alexej P. Pynko - 1999 - Annals of Pure and Applied Logic 98 (1-3):1-68.
    In this paper we define and study a generalized notion of a logical system that covers on an equal formal basis sentential, equational and sequential systems. We develop a general theory of equivalence between generalized logics that provides, first, a conception of algebraizable logic , second, a formal concept of equivalence between sequential systems and, third, a notion of equivalence between sentential and sequential systems. We also use our theory of equivalence for developing a general algebraic approach to conjunctive non-pseudo-axiomatic (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Algebraic Study of Two Deductive Systems of Relevance Logic.Josep Maria Font & Gonzalo Rodríguez - 1994 - Notre Dame Journal of Formal Logic 35 (3):369-397.
    In this paper two deductive systems associated with relevance logic are studied from an algebraic point of view. One is defined by the familiar, Hilbert-style, formalization of R; the other one is a weak version of it, called WR, which appears as the semantic entailment of the Meyer-Routley-Fine semantics, and which has already been suggested by Wójcicki for other reasons. This weaker consequence is first defined indirectly, using R, but we prove that the first one turns out to be an (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Correspondences between Gentzen and Hilbert Systems.J. G. Raftery - 2006 - Journal of Symbolic Logic 71 (3):903 - 957.
    Most Gentzen systems arising in logic contain few axiom schemata and many rule schemata. Hilbert systems, on the other hand, usually contain few proper inference rules and possibly many axioms. Because of this, the two notions tend to serve different purposes. It is common for a logic to be specified in the first instance by means of a Gentzen calculus, whereupon a Hilbert-style presentation ‘for’ the logic may be sought—or vice versa. Where this has occurred, the word ‘for’ has taken (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Selfextensional Logics with a Conjunction.Ramon Jansana - 2006 - Studia Logica 84 (1):63-104.
    A logic is selfextensional if its interderivability (or mutual consequence) relation is a congruence relation on the algebra of formulas. In the paper we characterize the selfextensional logics with a conjunction as the logics that can be defined using the semilattice order induced by the interpretation of the conjunction in the algebras of their algebraic counterpart. Using the charactrization we provide simpler proofs of several results on selfextensional logics with a conjunction obtained in [13] using Gentzen systems. We also obtain (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Leibniz filters revisited.Ramon Jansana - 2003 - Studia Logica 75 (3):305 - 317.
    Leibniz filters play a prominent role in the theory of protoalgebraic logics. In [3] the problem of the definability of Leibniz filters is considered. Here we study the definability of Leibniz filters with parameters. The main result of the paper says that a protoalgebraic logic S has its strong version weakly algebraizable iff it has its Leibniz filters explicitly definable with parameters.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Leibniz filters and the strong version of a protoalgebraic logic.Josep Maria Font & Ramon Jansana - 2001 - Archive for Mathematical Logic 40 (6):437-465.
    A filter of a sentential logic ? is Leibniz when it is the smallest one among all the ?-filters on the same algebra having the same Leibniz congruence. This paper studies these filters and the sentential logic ?+ defined by the class of all ?-matrices whose filter is Leibniz, which is called the strong version of ?, in the context of protoalgebraic logics with theorems. Topics studied include an enhanced Correspondence Theorem, characterizations of the weak algebraizability of ?+ and of (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • A survey of abstract algebraic logic.J. M. Font, R. Jansana & D. Pigozzi - 2003 - Studia Logica 74 (1-2):13 - 97.
    Download  
     
    Export citation  
     
    Bookmark   112 citations  
  • (2 other versions)Foreword. [REVIEW]J. Font, R. Jansana & D. Pigozzi - 2003 - Studia Logica 74 (1-2):3-12.
    Download  
     
    Export citation  
     
    Bookmark   100 citations  
  • Implicational (semilinear) logics I: a new hierarchy. [REVIEW]Petr Cintula & Carles Noguera - 2010 - Archive for Mathematical Logic 49 (4):417-446.
    In abstract algebraic logic, the general study of propositional non-classical logics has been traditionally based on the abstraction of the Lindenbaum-Tarski process. In this process one considers the Leibniz relation of indiscernible formulae. Such approach has resulted in a classification of logics partly based on generalizations of equivalence connectives: the Leibniz hierarchy. This paper performs an analogous abstract study of non-classical logics based on the kind of generalized implication connectives they possess. It yields a new classification of logics expanding Leibniz (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Protoalgebraic Logics.Janusz Czelakowski - 2003 - Studia Logica 74 (1):313-342.
    Download  
     
    Export citation  
     
    Bookmark   41 citations