Switch to: Citations

References in:

A Hierarchy of Weak Double Negations

Studia Logica 101 (6):1277-1297 (2013)

Add references

You must login to add references.
  1. Some Useful 16-Valued Logics: How a Computer Network Should Think.Yaroslav Shramko & Heinrich Wansing - 2005 - Journal of Philosophical Logic 34 (2):121-153.
    In Belnap's useful 4-valued logic, the set 2 = {T, F} of classical truth values is generalized to the set 4 = ������(2) = {Ø, {T}, {F}, {T, F}}. In the present paper, we argue in favor of extending this process to the set 16 = ᵍ (4) (and beyond). It turns out that this generalization is well-motivated and leads from the bilattice FOUR₂ with an information and a truth-and-falsity ordering to another algebraic structure, namely the trilattice SIXTEEN₃ with an (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • The Logic of Information Structures.H. Wansing - 1993
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Limits for Paraconsistent Calculi.Walter A. Carnielli & João Marcos - 1999 - Notre Dame Journal of Formal Logic 40 (3):375-390.
    This paper discusses how to define logics as deductive limits of sequences of other logics. The case of da Costa's hierarchy of increasingly weaker paraconsistent calculi, known as $ \mathcal {C}$n, 1 $ \leq$ n $ \leq$ $ \omega$, is carefully studied. The calculus $ \mathcal {C}$$\scriptstyle \omega$, in particular, constitutes no more than a lower deductive bound to this hierarchy and differs considerably from its companions. A long standing problem in the literature (open for more than 35 years) is (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Hyper-contradictions, generalized truth values and logics of truth and falsehood.Yaroslav Shramko & Heinrich Wansing - 2006 - Journal of Logic, Language and Information 15 (4):403-424.
    In Philosophical Logic, the Liar Paradox has been used to motivate the introduction of both truth value gaps and truth value gluts. Moreover, in the light of “revenge Liar” arguments, also higher-order combinations of generalized truth values have been suggested to account for so-called hyper-contradictions. In the present paper, Graham Priest's treatment of generalized truth values is scrutinized and compared with another strategy of generalizing the set of classical truth values and defining an entailment relation on the resulting sets of (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Intuitionistic logic with strong negation.Yuri Gurevich - 1977 - Studia Logica 36 (1-2):49 - 59.
    This paper is a reaction to the following remark by grzegorczyk: "the compound sentences are not a product of experiment. they arise from reasoning. this concerns also negations; we see that the lemon is yellow, we do not see that it is not blue." generally, in science the truth is ascertained as indirectly as falsehood. an example: a litmus-paper is used to verify the sentence "the solution is acid." this approach gives rise to a (very intuitionistic indeed) conservative extension of (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Proof Systems Combining Classical and Paraconsistent Negations.Norihiro Kamide - 2009 - Studia Logica 91 (2):217-238.
    New propositional and first-order paraconsistent logics (called L ω and FL ω , respectively) are introduced as Gentzen-type sequent calculi with classical and paraconsistent negations. The embedding theorems of L ω and FL ω into propositional (first-order, respectively) classical logic are shown, and the completeness theorems with respect to simple semantics for L ω and FL ω are proved. The cut-elimination theorems for L ω and FL ω are shown using both syntactical ways via the embedding theorems and semantical ways (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Non-deterministic View on Non-classical Negations.Arnon Avron - 2005 - Studia Logica 80 (2-3):159-194.
    We investigate two large families of logics, differing from each other by the treatment of negation. The logics in one of them are obtained from the positive fragment of classical logic (with or without a propositional constant ff for “the false”) by adding various standard Gentzen-type rules for negation. The logics in the other family are similarly obtained from LJ+, the positive fragment of intuitionistic logic (again, with or without ff). For all the systems, we provide simple semantics which is (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Possible-translations semantics for some weak classically-based paraconsistent logics.João Marcos - 2008 - Journal of Applied Non-Classical Logics 18 (1):7-28.
    In many real-life applications of logic it is useful to interpret a particular sentence as true together with its negation. If we are talking about classical logic, this situation would force all other sentences to be equally interpreted as true. Paraconsistent logics are exactly those logics that escape this explosive effect of the presence of inconsistencies and allow for sensible reasoning still to take effect. To provide reasonably intuitive semantics for paraconsistent logics has traditionally proven to be a challenge. Possible-translations (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Intuitive semantics for first-degree entailments and 'coupled trees'.J. Michael Dunn - 1976 - Philosophical Studies 29 (3):149-168.
    Download  
     
    Export citation  
     
    Bookmark   241 citations  
  • (1 other version)Constructible falsity.David Nelson - 1949 - Journal of Symbolic Logic 14 (1):16-26.
    Download  
     
    Export citation  
     
    Bookmark   169 citations  
  • Constructible falsity and inexact predicates.Ahmad Almukdad & David Nelson - 1984 - Journal of Symbolic Logic 49 (1):231-233.
    Download  
     
    Export citation  
     
    Bookmark   106 citations  
  • Reasoning with logical bilattices.Ofer Arieli & Arnon Avron - 1996 - Journal of Logic, Language and Information 5 (1):25--63.
    The notion of bilattice was introduced by Ginsberg, and further examined by Fitting, as a general framework for many applications. In the present paper we develop proof systems, which correspond to bilattices in an essential way. For this goal we introduce the notion of logical bilattices. We also show how they can be used for efficient inferences from possibly inconsistent data. For this we incorporate certain ideas of Kifer and Lozinskii, which happen to suit well the context of our work. (...)
    Download  
     
    Export citation  
     
    Bookmark   113 citations  
  • The value of the four values.Ofer Arieli & Arnon Avron - 1998 - Artificial Intelligence 102 (1):97-141.
    Download  
     
    Export citation  
     
    Bookmark   55 citations