Switch to: References

Add citations

You must login to add citations.
  1. 40 years of FDE: An Introductory Overview.Hitoshi Omori & Heinrich Wansing - 2017 - Studia Logica 105 (6):1021-1049.
    In this introduction to the special issue “40 years of FDE”, we offer an overview of the field and put the papers included in the special issue into perspective. More specifically, we first present various semantics and proof systems for FDE, and then survey some expansions of FDE by adding various operators starting with constants. We then turn to unary and binary connectives, which are classified in a systematic manner. First-order FDE is also briefly revisited, and we conclude by listing (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Paraconsistent double negation as a modal operator.Norihiro Kamide - 2016 - Mathematical Logic Quarterly 62 (6):552-562.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Rivals to Belnap–Dunn Logic on Interlaced Trilattices.Thomas M. Ferguson - 2017 - Studia Logica 105 (6):1123-1148.
    The work of Arnon Avron and Ofer Arieli has shown a deep relationship between the theory of bilattices and the Belnap-Dunn logic \. This correspondence has been interpreted as evidence that \ is “the” logic of bilattices, a consideration reinforced by the work of Yaroslav Shramko and Heinrich Wansing in which \ is shown to be similarly entrenched with respect to the theories of trilattices and, more generally, multilattices. In this paper, we export Melvin Fitting’s “cut-down” connectives—propositional connectives that “cut (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The attack as strong negation, part I.D. Gabbay & M. Gabbay - 2015 - Logic Journal of the IGPL 23 (6):881-941.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The logic determined by Smiley’s matrix for Anderson and Belnap’s first-degree entailment logic.José M. Méndez & Gemma Robles - 2016 - Journal of Applied Non-Classical Logics 26 (1):47-68.
    The aim of this paper is to define the logical system Sm4 characterised by the degree of truth-preserving consequence relation defined on the ordered set of values of Smiley’s four-element matrix MSm4. The matrix MSm4 has been of considerable importance in the development of relevant logics and it is at the origin of bilattice logics. It will be shown that Sm4 is a most interesting paraconsistent logic which encloses a sound theory of logical necessity similar to that of Anderson and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Proof Systems Combining Classical and Paraconsistent Negations.Norihiro Kamide - 2009 - Studia Logica 91 (2):217-238.
    New propositional and first-order paraconsistent logics (called L ω and FL ω , respectively) are introduced as Gentzen-type sequent calculi with classical and paraconsistent negations. The embedding theorems of L ω and FL ω into propositional (first-order, respectively) classical logic are shown, and the completeness theorems with respect to simple semantics for L ω and FL ω are proved. The cut-elimination theorems for L ω and FL ω are shown using both syntactical ways via the embedding theorems and semantical ways (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Non-deterministic View on Non-classical Negations.Arnon Avron - 2005 - Studia Logica 80 (2-3):159-194.
    We investigate two large families of logics, differing from each other by the treatment of negation. The logics in one of them are obtained from the positive fragment of classical logic (with or without a propositional constant ff for “the false”) by adding various standard Gentzen-type rules for negation. The logics in the other family are similarly obtained from LJ+, the positive fragment of intuitionistic logic (again, with or without ff). For all the systems, we provide simple semantics which is (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Gentzen-Type Methods for Bilattice Negation.Norihiro Kamide - 2005 - Studia Logica 80 (2-3):265-289.
    A general Gentzen-style framework for handling both bilattice (or strong) negation and usual negation is introduced based on the characterization of negation by a modal-like operator. This framework is regarded as an extension, generalization or re- finement of not only bilattice logics and logics with strong negation, but also traditional logics including classical logic LK, classical modal logic S4 and classical linear logic CL. Cut-elimination theorems are proved for a variety of proposed sequent calculi including CLS (a conservative extension of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Some Useful 16-Valued Logics: How a Computer Network Should Think.Yaroslav Shramko & Heinrich Wansing - 2005 - Journal of Philosophical Logic 34 (2):121-153.
    In Belnap's useful 4-valued logic, the set 2 = {T, F} of classical truth values is generalized to the set 4 = ������(2) = {Ø, {T}, {F}, {T, F}}. In the present paper, we argue in favor of extending this process to the set 16 = ᵍ (4) (and beyond). It turns out that this generalization is well-motivated and leads from the bilattice FOUR₂ with an information and a truth-and-falsity ordering to another algebraic structure, namely the trilattice SIXTEEN₃ with an (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • A Gentzen Calculus for Nothing but the Truth.Stefan Wintein & Reinhard Muskens - 2016 - Journal of Philosophical Logic 45 (4):451-465.
    In their paper Nothing but the Truth Andreas Pietz and Umberto Rivieccio present Exactly True Logic, an interesting variation upon the four-valued logic for first-degree entailment FDE that was given by Belnap and Dunn in the 1970s. Pietz & Rivieccio provide this logic with a Hilbert-style axiomatisation and write that finding a nice sequent calculus for the logic will presumably not be easy. But a sequent calculus can be given and in this paper we will show that a calculus for (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Paracomplete logics which are dual to the paraconsistent logics L3A and L3B.Alejandro Hernández-Tello, Verónica Borja-Macı́as & Marcelo E. Coniglio - 2020 - LANMR 2019: Proceedings of the 12th Latin American Workshop on Logic/Languages, Algorithms and New Methods of Reasoning.
    In 2016 Beziau, introduce a more restricted concept of paraconsistency, namely the genuine paraconsistency. He calls genuine paraconsistent logic those logic rejecting φ, ¬φ |- ψ and |- ¬(φ ∧ ¬φ). In that paper the author analyzes, among the three-valued logics, which of these logics satisfy this property. If we consider multiple-conclusion consequence relations, the dual properties of those above mentioned are: |- φ, ¬φ, and ¬(ψ ∨ ¬ψ) |- . We call genuine paracomplete logics those rejecting the mentioned properties. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The logic of distributive bilattices.Félix Bou & Umberto Rivieccio - 2011 - Logic Journal of the IGPL 19 (1):183-216.
    Bilattices, introduced by Ginsberg as a uniform framework for inference in artificial intelligence, are algebraic structures that proved useful in many fields. In recent years, Arieli and Avron developed a logical system based on a class of bilattice-based matrices, called logical bilattices, and provided a Gentzen-style calculus for it. This logic is essentially an expansion of the well-known Belnap–Dunn four-valued logic to the standard language of bilattices. Our aim is to study Arieli and Avron’s logic from the perspective of abstract (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The Rules of Logic Composition for the Bayesian Epistemic e-Values.Wagner Borges & Julio Michael Stern - 2007 - Logic Journal of the IGPL 15 (5-6):401-420.
    In this paper, the relationship between the e-value of a complex hypothesis, H, and those of its constituent elementary hypotheses, Hj, j = 1… k, is analyzed, in the independent setup. The e-value of a hypothesis H, ev, is a Bayesian epistemic, credibility or truth value defined under the Full Bayesian Significance Testing mathematical apparatus. The questions addressed concern the important issue of how the truth value of H, and the truth function of the corresponding FBST structure M, relate to (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • The Logic of Generalized Truth Values and the Logic of Bilattices.Sergei P. Odintsov & Heinrich Wansing - 2015 - Studia Logica 103 (1):91-112.
    This paper sheds light on the relationship between the logic of generalized truth values and the logic of bilattices. It suggests a definite solution to the problem of axiomatizing the truth and falsity consequence relations, \ and \ , considered in a language without implication and determined via the truth and falsity orderings on the trilattice SIXTEEN 3 . The solution is based on the fact that a certain algebra isomorphic to SIXTEEN 3 generates the variety of commutative and distributive (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Notes on Craig interpolation for LJ with strong negation.Norihiro Kamide - 2011 - Mathematical Logic Quarterly 57 (4):395-399.
    The Craig interpolation theorem is shown for an extended LJ with strong negation. A new simple proof of this theorem is obtained. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A note on dual-intuitionistic logic.Norihiro Kamide - 2003 - Mathematical Logic Quarterly 49 (5):519.
    Dual-intuitionistic logics are logics proposed by Czermak , Goodman and Urbas . It is shown in this paper that there is a correspondence between Goodman's dual-intuitionistic logic and Nelson's constructive logic N−.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A Hierarchy of Weak Double Negations.Norihiro Kamide - 2013 - Studia Logica 101 (6):1277-1297.
    In this paper, a way of constructing many-valued paraconsistent logics with weak double negation axioms is proposed. A hierarchy of weak double negation axioms is addressed in this way. The many-valued paraconsistent logics constructed are defined as Gentzen-type sequent calculi. The completeness and cut-elimination theorems for these logics are proved in a uniform way. The logics constructed are also shown to be decidable.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • An infinity of super-Belnap logics.Umberto Rivieccio - 2012 - Journal of Applied Non-Classical Logics 22 (4):319-335.
    We look at extensions (i.e., stronger logics in the same language) of the Belnap–Dunn four-valued logic. We prove the existence of a countable chain of logics that extend the Belnap–Dunn and do not coincide with any of the known extensions (Kleene’s logics, Priest’s logic of paradox). We characterise the reduced algebraic models of these new logics and prove a completeness result for the first and last element of the chain stating that both logics are determined by a single finite logical (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Priestley Duality for Bilattices.A. Jung & U. Rivieccio - 2012 - Studia Logica 100 (1-2):223-252.
    We develop a Priestley-style duality theory for different classes of algebras having a bilattice reduct. A similar investigation has already been realized by B. Mobasher, D. Pigozzi, G. Slutzki and G. Voutsadakis, but only from an abstract category-theoretic point of view. In the present work we are instead interested in a concrete study of the topological spaces that correspond to bilattices and some related algebras that are obtained through expansions of the algebraic language.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Power of Belnap: Sequent Systems for SIXTEEN ₃. [REVIEW]Heinrich Wansing - 2010 - Journal of Philosophical Logic 39 (4):369 - 393.
    The trilattice SIXTEEN₃ is a natural generalization of the wellknown bilattice FOUR₂. Cut-free, sound and complete sequent calculi for truth entailment and falsity entailment in SIXTEEN₃, are presented.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Sequent calculi for some trilattice logics.Norihiro Kamide & Heinrich Wansing - 2009 - Review of Symbolic Logic 2 (2):374-395.
    The trilattice SIXTEEN3 introduced in Shramko & Wansing (2005) is a natural generalization of the famous bilattice FOUR2. Some Hilbert-style proof systems for trilattice logics related to SIXTEEN3 have recently been studied (Odintsov, 2009; Shramko & Wansing, 2005). In this paper, three sequent calculi GB, FB, and QB are presented for Odintsovs coordinate valuations associated with valuations in SIXTEEN3. The equivalence between GB, FB, and QB, the cut-elimination theorems for these calculi, and the decidability of B are proved. In addition, (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On Partial and Paraconsistent Logics.Reinhard Muskens - 1999 - Notre Dame Journal of Formal Logic 40 (3):352-374.
    In this paper we consider the theory of predicate logics in which the principle of Bivalence or the principle of Non-Contradiction or both fail. Such logics are partial or paraconsistent or both. We consider sequent calculi for these logics and prove Model Existence. For L4, the most general logic under consideration, we also prove a version of the Craig-Lyndon Interpolation Theorem. The paper shows that many techniques used for classical predicate logic generalise to partial and paraconsistent logics once the right (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Simple Tableaus for Simple Logics.Melvin Fitting - 2024 - Notre Dame Journal of Formal Logic 65 (3):275-309.
    Consider those many-valued logic models in which the truth values are a lattice that supplies interpretations for the logical connectives of conjunction and disjunction, and which has a De Morgan involution supplying an interpretation for negation. Assume that the set of designated truth values is a prime filter in the lattice. Each of these structures determines a simple many-valued logic. We show that there is a single Smullyan-style signed tableau system appropriate for all of the logics these structures determine. Differences (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Residuated bilattices.Umberto Rivieccio & Ramon Jansana - 2012 - Soft Computing 16 (3):493-504.
    We introduce a new product bilattice con- struction that generalizes the well-known one for interlaced bilattices and others that were developed more recently, allowing to obtain a bilattice with two residuated pairs as a certain kind of power of an arbitrary residuated lattice. We prove that the class of bilattices thus obtained is a variety, give a finite axiomatization for it and characterize the congruences of its members in terms of those of their lat- tice factors. Finally, we show how (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Varieties of interlaced bilattices.Umberto Rivieccio, Ramon Jansana & Felix Bou Moliner - 2011 - Algebra Universalis 66 (1-2):115-141.
    The paper contains some algebraic results on several varieties of algebras having an (interlaced) bilattice reduct. Some of these algebras have already been studied in the literature (for instance bilattices with conflation, introduced by M. Fit- ting), while others arose from the algebraic study of O. Arieli and A. Avron’s bilattice logics developed in the third author’s PhD dissertation. We extend the representation theorem for bounded interlaced bilattices (proved, among others, by A. Avron) to un- bounded bilattices and prove analogous (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Embedding Friendly First-Order Paradefinite and Connexive Logics.Norihiro Kamide - 2022 - Journal of Philosophical Logic 51 (5):1055-1102.
    First-order intuitionistic and classical Nelson–Wansing and Arieli–Avron–Zamansky logics, which are regarded as paradefinite and connexive logics, are investigated based on Gentzen-style sequent calculi. The cut-elimination and completeness theorems for these logics are proved uniformly via theorems for embedding these logics into first-order intuitionistic and classical logics. The modified Craig interpolation theorems for these logics are also proved via the same embedding theorems. Furthermore, a theorem for embedding first-order classical Arieli–Avron–Zamansky logic into first-order intuitionistic Arieli–Avron–Zamansky logic is proved using a modified (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Paraconsistent Sensitivity Analysis for Bayesian Significance Tests.Julio Michael Stern - 2004 - Lecture Notes in Artificial Intelligence 3171:134-143.
    In this paper, the notion of degree of inconsistency is introduced as a tool to evaluate the sensitivity of the Full Bayesian Significance Test (FBST) value of evidence with respect to changes in the prior or reference density. For that, both the definition of the FBST, a possibilistic approach to hypothesis testing based on Bayesian probability procedures, and the use of bilattice structures, as introduced by Ginsberg and Fitting, in paraconsistent logics, are reviewed. The computational and theoretical advantages of using (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Alternative Multilattice Logics: An Approach Based on Monosequent and Indexed Monosequent Calculi.Norihiro Kamide - 2021 - Studia Logica 109 (6):1241-1271.
    Two new multilattice logics called submultilattice logic and indexed multilattice logic are introduced as a monosequent calculus and an indexed monosequent calculus, respectively. The submultilattice logic is regarded as a monosequent calculus version of Shramko’s original multilattice logic, which is also known as the logic of logical multilattices. The indexed multilattice logic is an extension of the submultilattice logic, and is regarded as the logic of multilattices. A completeness theorem with respect to a lattice-valued semantics is proved for the submultilattice (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Lattice Logic, Bilattice Logic and Paraconsistent Quantum Logic: a Unified Framework Based on Monosequent Systems.Norihiro Kamide - 2021 - Journal of Philosophical Logic 50 (4):781-811.
    Lattice logic, bilattice logic, and paraconsistent quantum logic are investigated based on monosequent systems. Paraconsistent quantum logic is an extension of lattice logic, and bilattice logic is an extension of paraconsistent quantum logic. Monosequent system is a sequent calculus based on the restricted sequent that contains exactly one formula in both the antecedent and succedent. It is known that a completeness theorem with respect to a lattice-valued semantics holds for a monosequent system for lattice logic. A completeness theorem with respect (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Normal and Self-extensional Extension of Dunn–Belnap Logic.Arnon Avron - 2020 - Logica Universalis 14 (3):281-296.
    A logic \ is called self-extensional if it allows to replace occurrences of a formula by occurrences of an \-equivalent one in the context of claims about logical consequence and logical validity. It is known that no three-valued paraconsistent logic which has an implication can be self-extensional. In this paper we show that in contrast, the famous Dunn–Belnap four-valued logic has exactly one self-extensional four-valued extension which has an implication. We also investigate the main properties of this logic, determine the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Four-Valued Dynamic Epistemic Logic.Yuri David Santos - 2020 - Journal of Logic, Language and Information 29 (4):451-489.
    Epistemic logic is usually employed to model two aspects of a situation: the factual and the epistemic aspects. Truth, however, is not always attainable, and in many cases we are forced to reason only with whatever information is available to us. In this paper, we will explore a four-valued epistemic logic designed to deal with these situations, where agents have only knowledge about the available information, which can be incomplete or conflicting, but not explicitly about facts. This layer of available (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Non-involutive twist-structures.Umberto Rivieccio, Paulo Maia & Achim Jung - 2020 - Logic Journal of the IGPL 28 (5):973-999.
    A recent paper by Jakl, Jung and Pultr succeeded for the first time in establishing a very natural link between bilattice logic and the duality theory of d-frames and bitopological spaces. In this paper we further exploit, extend and investigate this link from an algebraic and a logical point of view. In particular, we introduce classes of algebras that extend bilattices, d-frames and N4-lattices to a setting in which the negation is not necessarily involutive, and we study corresponding logics. We (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Partiality and its dual in natural implicative expansions of Kleene’s strong 3-valued matrix with only one designated value.Gemma Robles & José M. Méndez - 2019 - Logic Journal of the IGPL 27 (6):910-932.
    Equivalent overdetermined and underdetermined bivalent Belnap–Dunn type semantics for the logics determined by all natural implicative expansions of Kleene’s strong 3-valued matrix with only one designated value are provided.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Completeness and Cut-Elimination for First-Order Ideal Paraconsistent Four-Valued Logic.Norihiro Kamide & Yoni Zohar - 2020 - Studia Logica 108 (3):549-571.
    In this study, we prove the completeness and cut-elimination theorems for a first-order extension F4CC of Arieli, Avron, and Zamansky’s ideal paraconsistent four-valued logic known as 4CC. These theorems are proved using Schütte’s method, which can simultaneously prove completeness and cut-elimination.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Definability of Connectives and Modal Logics over FDE.Sergei P. Odintsov, Daniel Skurt & Heinrich Wansing - forthcoming - Logic and Logical Philosophy:1.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Valuations: Bi, Tri, and Tetra.Rohan French & David Ripley - 2019 - Studia Logica 107 (6):1313-1346.
    This paper considers some issues to do with valuational presentations of consequence relations, and the Galois connections between spaces of valuations and spaces of consequence relations. Some of what we present is known, and some even well-known; but much is new. The aim is a systematic overview of a range of results applicable to nonreflexive and nontransitive logics, as well as more familiar logics. We conclude by considering some connectives suggested by this approach.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Track-Down Operations on Bilattices.Damian Szmuc - 2018 - In Robert Wille & Martin Lukac (eds.), Proceedings of the 48th IEEE International Symposium on Multiple-Valued Logic. pp. 74-79.
    This paper discusses a dualization of Fitting's notion of a "cut-down" operation on a bilattice, rendering a "track-down" operation, later used to represent the idea that a consistent opinion cannot arise from a set including an inconsistent opinion. The logic of track-down operations on bilattices is proved equivalent to the logic d_Sfde, dual to Deutsch's system S_fde. Furthermore, track-down operations are employed to provide an epistemic interpretation for paraconsistent weak Kleene logic. Finally, two logics of sequential combinations of cut-and track-down (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Bilattice Public Announcement Logic.Umberto Rivieccio - 2014 - In Rajeev Goré, Barteld Kooi & Agi Kurucz (eds.), Advances in Modal Logic, Volume 10: Papers From the Tenth Aiml Conference, Held in Groningen, the Netherlands, August 2014. London, England: CSLI Publications. pp. 459-477.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The lattice of Belnapian modal logics: Special extensions and counterparts.Sergei P. Odintsov & Stanislav O. Speranski - 2016 - Logic and Logical Philosophy 25 (1):3-33.
    Let K be the least normal modal logic and BK its Belnapian version, which enriches K with ‘strong negation’. We carry out a systematic study of the lattice of logics containing BK based on: • introducing the classes of so-called explosive, complete and classical Belnapian modal logics; • assigning to every normal modal logic three special conservative extensions in these classes; • associating with every Belnapian modal logic its explosive, complete and classical counterparts. We investigate the relationships between special extensions (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • An expansion of first-order Belnap-Dunn logic.K. Sano & H. Omori - 2014 - Logic Journal of the IGPL 22 (3):458-481.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Generalizing Functional Completeness in Belnap-Dunn Logic.Hitoshi Omori & Katsuhiko Sano - 2015 - Studia Logica 103 (5):883-917.
    One of the problems we face in many-valued logic is the difficulty of capturing the intuitive meaning of the connectives introduced through truth tables. At the same time, however, some logics have nice ways to capture the intended meaning of connectives easily, such as four-valued logic studied by Belnap and Dunn. Inspired by Dunn’s discovery, we first describe a mechanical procedure, in expansions of Belnap-Dunn logic, to obtain truth conditions in terms of the behavior of the Truth and the False, (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • A calculus for Belnap's logic in which each proof consists of two trees.Stefan Wintein & Reinhard Muskens - 2012 - Logique Et Analyse 220:643-656.
    In this paper we introduce a Gentzen calculus for (a functionally complete variant of) Belnap's logic in which establishing the provability of a sequent in general requires \emph{two} proof trees, one establishing that whenever all premises are true some conclusion is true and one that guarantees the falsity of at least one premise if all conclusions are false. The calculus can also be put to use in proving that one statement \emph{necessarily approximates} another, where necessary approximation is a natural dual (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Completeness and cut-elimination theorems for trilattice logics.Norihiro Kamide & Heinrich Wansing - 2011 - Annals of Pure and Applied Logic 162 (10):816-835.
    A sequent calculus for Odintsov’s Hilbert-style axiomatization of a logic related to the trilattice SIXTEEN3 of generalized truth values is introduced. The completeness theorem w.r.t. a simple semantics for is proved using Maehara’s decomposition method that simultaneously derives the cut-elimination theorem for . A first-order extension of and its semantics are also introduced. The completeness and cut-elimination theorems for are proved using Schütte’s method.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Algebraic Completeness of Connexive and Bi-Intuitionistic Multilattice Logics.Yaroslav Petrukhin - 2024 - Journal of Logic, Language and Information 33 (2):179-196.
    In this paper, we introduce the notions of connexive and bi-intuitionistic multilattices and develop on their base the algebraic semantics for Kamide, Shramko, and Wansing’s connexive and bi-intuitionistic multilattice logics which were previously known in the form of sequent calculi and Kripke semantics. We prove that these logics are sound and complete with respect to the presented algebraic structures.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Provability multilattice logic.Yaroslav Petrukhin - 2022 - Journal of Applied Non-Classical Logics 32 (4):239-272.
    In this paper, we introduce provability multilattice logic PMLn and multilattice arithmetic MPAn which extends first-order multilattice logic with equality by multilattice versions of Peano axioms. We show that PMLn has the provability interpretation with respect to MPAn and prove the arithmetic completeness theorem for it. We formulate PMLn in the form of a nested sequent calculus and show that cut is admissible in it. We introduce the notion of a provability multilattice and develop algebraic semantics for PMLn on its (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • One Heresy and One Orthodoxy: On Dialetheism, Dimathematism, and the Non-normativity of Logic.Heinrich Wansing - 2024 - Erkenntnis 89 (1):181-205.
    In this paper, Graham Priest’s understanding of dialetheism, the view that there exist true contradictions, is discussed, and various kinds of metaphysical dialetheism are distinguished between. An alternative to dialetheism is presented, namely a thesis called ‘dimathematism’. It is pointed out that dimathematism enables one to escape a slippery slope argument for dialetheism that has been put forward by Priest. Moreover, dimathematism is presented as a thesis that is helpful in rejecting the claim that logic is a normative discipline.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Falsification-Aware Semantics and Sequent Calculi for Classical Logic.Norihiro Kamide - 2021 - Journal of Philosophical Logic 51 (1):99-126.
    In this study, falsification-aware semantics and sequent calculi for first-order classical logic are introduced and investigated. These semantics and sequent calculi are constructed based on a falsification-aware setting for first-order Nelson constructive three-valued logic. In fact, these semantics and sequent calculi are regarded as those for a classical variant of N3. The completeness and cut-elimination theorems for the proposed semantics and sequent calculi are proved using Schütte’s method. Similar results for the propositional case are also obtained.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Neighbourhood Semantics for FDE-Based Modal Logics.S. Drobyshevich & D. Skurt - 2021 - Studia Logica 109 (6):1273-1309.
    We investigate some non-normal variants of well-studied paraconsistent and paracomplete modal logics that are based on N. Belnap’s and M. Dunn’s four-valued logic. Our basic non-normal modal logics are characterized by a weak extensionality rule, which reflects the four-valued nature of underlying logics. Aside from introducing our basic framework of bi-neighbourhood semantics, we develop a correspondence theory in order to prove completeness results with respect to our neighbourhood semantics for non-normal variants of \, \ and \.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Belnap-Dunn Semantics for the Variants of BN4 and E4 which Contain Routley and Meyer’s Logic B.Sandra M. López - forthcoming - Logic and Logical Philosophy:29-56.
    The logics BN4 and E4 can be considered as the 4-valued logics of the relevant conditional and (relevant) entailment, respectively. The logic BN4 was developed by Brady in 1982 and the logic E4 by Robles and Méndez in 2016. The aim of this paper is to investigate the implicative variants (of both systems) which contain Routley and Meyer’s logic B and endow them with a Belnap-Dunn type bivalent semantics.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Family of Strict/Tolerant Logics.Melvin Fitting - 2020 - Journal of Philosophical Logic 50 (2):363-394.
    Strict/tolerant logic, ST, evaluates the premises and the consequences of its consequence relation differently, with the premises held to stricter standards while consequences are treated more tolerantly. More specifically, ST is a three-valued logic with left sides of sequents understood as if in Kleene’s Strong Three Valued Logic, and right sides as if in Priest’s Logic of Paradox. Surprisingly, this hybrid validates the same sequents that classical logic does. A version of this result has been extended to meta, metameta, … (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations