Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Dag Prawitz on Proofs and Meaning.Heinrich Wansing (ed.) - 2014 - Cham, Switzerland: Springer.
    This volume is dedicated to Prof. Dag Prawitz and his outstanding contributions to philosophical and mathematical logic. Prawitz's eminent contributions to structural proof theory, or general proof theory, as he calls it, and inference-based meaning theories have been extremely influential in the development of modern proof theory and anti-realistic semantics. In particular, Prawitz is the main author on natural deduction in addition to Gerhard Gentzen, who defined natural deduction in his PhD thesis published in 1934. The book opens with an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Epistemic Pluralism.Fabien Schang - 2017 - Logique Et Analyse 239 (60):337-353.
    The present paper wants to promote epistemic pluralism as an alternative view of non-classical logics. For this purpose, a bilateralist logic of acceptance and rejection is developed in order to make an important di erence between several concepts of epistemology, including information and justi cation. Moreover, the notion of disagreement corresponds to a set of epistemic oppositions between agents. The result is a non-standard theory of opposition for many-valued logics, rendering total and partial disagreement in terms of epistemic negation and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On formal aspects of the epistemic approach to paraconsistency.Walter Carnielli, Marcelo E. Coniglio & Abilio Rodrigues - 2018 - In Marco Ruffino, Max Freund & Max Fernández de Castro (eds.), Logic and philosophy of logic. Recent trends from Latin America and Spain. College Publications. pp. 48-74.
    This paper reviews the central points and presents some recent developments of the epistemic approach to paraconsistency in terms of the preservation of evidence. Two formal systems are surveyed, the basic logic of evidence (BLE) and the logic of evidence and truth (LET J ), designed to deal, respectively, with evidence and with evidence and truth. While BLE is equivalent to Nelson’s logic N4, it has been conceived for a different purpose. Adequate valuation semantics that provide decidability are given for (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Paraconsistent double negation as a modal operator.Norihiro Kamide - 2016 - Mathematical Logic Quarterly 62 (6):552-562.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Dualities for modal N4-lattices.R. Jansana & U. Rivieccio - 2014 - Logic Journal of the IGPL 22 (4):608-637.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A labeled argumentation framework.Maximiliano C. D. Budán, Mauro Gómez Lucero, Ignacio Viglizzo & Guillermo R. Simari - 2015 - Journal of Applied Logic 13 (4):534-553.
    Argumentation is a form of reasoning where a claim is accepted or rejected according to the analysis of the arguments for and against it; furthermore, it provides a reasoning mechanism able to handle contradictory, incomplete and uncertain information in real-world situations. We combine Bipolar Argumentation Frameworks (an extension of Dung’s work) with an Algebra of Argumentation Labels modeling two independent types of interaction between arguments, representing meta-information associated with arguments, and introducing an acceptability notion that will give more information for (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Representation of interlaced trilattices.Umberto Rivieccio - 2013 - Journal of Applied Logic 11 (2):174-189.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Combining linear-time temporal logic with constructiveness and paraconsistency.Norihiro Kamide & Heinrich Wansing - 2010 - Journal of Applied Logic 8 (1):33-61.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Behavioral Algebraization of Logics.Carlos Caleiro, Ricardo Gonçalves & Manuel Martins - 2009 - Studia Logica 91 (1):63-111.
    We introduce and study a new approach to the theory of abstract algebraic logic (AAL) that explores the use of many-sorted behavioral logic in the role traditionally played by unsorted equational logic. Our aim is to extend the range of applicability of AAL toward providing a meaningful algebraic counterpart also to logics with a many-sorted language, and possibly including non-truth-functional connectives. The proposed behavioral approach covers logics which are not algebraizable according to the standard approach, while also bringing a new (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Dual Intuitionistic Logic and a Variety of Negations: The Logic of Scientific Research.Yaroslav Shramko - 2005 - Studia Logica 80 (2-3):347-367.
    We consider a logic which is semantically dual (in some precise sense of the term) to intuitionistic. This logic can be labeled as “falsification logic”: it embodies the Popperian methodology of scientific discovery. Whereas intuitionistic logic deals with constructive truth and non-constructive falsity, and Nelson's logic takes both truth and falsity as constructive notions, in the falsification logic truth is essentially non-constructive as opposed to falsity that is conceived constructively. We also briefly clarify the relationships of our falsification logic to (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Nelson's Negation on the Base of Weaker Versions of Intuitionistic Negation.Dimiter Vakarelov - 2005 - Studia Logica 80 (2):393-430.
    Constructive logic with Nelson negation is an extension of the intuitionistic logic with a special type of negation expressing some features of constructive falsity and refutation by counterexample. In this paper we generalize this logic weakening maximally the underlying intuitionistic negation. The resulting system, called subminimal logic with Nelson negation, is studied by means of a kind of algebras called generalized N-lattices. We show that generalized N-lattices admit representation formalizing the intuitive idea of refutation by means of counterexamples giving in (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Notes on N-lattices and constructive logic with strong negation.D. Vakarelov - 1977 - Studia Logica 36 (1-2):109-125.
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Co-constructive logic for proofs and refutations.James Trafford - 2014 - Studia Humana 3 (4):22-40.
    This paper considers logics which are formally dual to intuitionistic logic in order to investigate a co-constructive logic for proofs and refutations. This is philosophically motivated by a set of problems regarding the nature of constructive truth, and its relation to falsity. It is well known both that intuitionism can not deal constructively with negative information, and that defining falsity by means of intuitionistic negation leads, under widely-held assumptions, to a justification of bivalence. For example, we do not want to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Logics of Nonsense and Parry Systems.Thomas Macaulay Ferguson - 2015 - Journal of Philosophical Logic 44 (1):65-80.
    We examine the relationship between the logics of nonsense of Bochvar and Halldén and the containment logics in the neighborhood of William Parry’s A I. We detail two strategies for manufacturing containment logics from nonsense logics—taking either connexive and paraconsistent fragments of such systems—and show how systems determined by these techniques have appeared as Frederick Johnson’s R C and Carlos Oller’s A L. In particular, we prove that Johnson’s system is precisely the intersection of Bochvar’s B 3 and Graham Priest’s (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Łukasiewicz, Supervaluations and the Future.Greg Restall - 2005 - Logic and Philosophy of Science 3:1-10.
    A B S T R AC T: In this paper I consider an interpretation of future contingents which motivates a unification of a Łukasiewicz-style logic with the more classical supervaluational semantics. This in turn motivates a new non-classical logic modelling what is “made true by history up until now. ” I give a simple Hilbert-style proof theory, and a soundness and completeness argument for the proof theory with respect to the intended models.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Constructive negation, implication, and co-implication.Heinrich Wansing - 2008 - Journal of Applied Non-Classical Logics 18 (2-3):341-364.
    In this paper, a family of paraconsistent propositional logics with constructive negation, constructive implication, and constructive co-implication is introduced. Although some fragments of these logics are known from the literature and although these logics emerge quite naturally, it seems that none of them has been considered so far. A relational possible worlds semantics as well as sound and complete display sequent calculi for the logics under consideration are presented.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • A modal theorem-preserving translation of a class of three-valued logics of incomplete information.D. Ciucci & D. Dubois - 2013 - Journal of Applied Non-Classical Logics 23 (4):321-352.
    There are several three-valued logical systems that form a scattered landscape, even if all reasonable connectives in three-valued logics can be derived from a few of them. Most papers on this subject neglect the issue of the relevance of such logics in relation with the intended meaning of the third truth-value. Here, we focus on the case where the third truth-value means unknown, as suggested by Kleene. Under such an understanding, we show that any truth-qualified formula in a large range (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Bilattices with Implications.Félix Bou & Umberto Rivieccio - 2013 - Studia Logica 101 (4):651-675.
    In a previous work we studied, from the perspective ofAlgebraic Logic, the implicationless fragment of a logic introduced by O. Arieli and A. Avron using a class of bilattice-based logical matrices called logical bilattices. Here we complete this study by considering the Arieli-Avron logic in the full language, obtained by adding two implication connectives to the standard bilattice language. We prove that this logic is algebraizable and investigate its algebraic models, which turn out to be distributive bilattices with additional implication (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Extensions of Priest-da Costa Logic.Thomas Macaulay Ferguson - 2014 - Studia Logica 102 (1):145-174.
    In this paper, we look at applying the techniques from analyzing superintuitionistic logics to extensions of the cointuitionistic Priest-da Costa logic daC (introduced by Graham Priest as “da Costa logic”). The relationship between the superintuitionistic axioms- definable in daC- and extensions of Priest-da Costa logic (sdc-logics) is analyzed and applied to exploring the gap between the maximal si-logic SmL and classical logic in the class of sdc-logics. A sequence of strengthenings of Priest-da Costa logic is examined and employed to pinpoint (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Information Completeness in Nelson Algebras of Rough Sets Induced by Quasiorders.Jouni Järvinen, Piero Pagliani & Sándor Radeleczki - 2013 - Studia Logica 101 (5):1073-1092.
    In this paper, we give an algebraic completeness theorem for constructive logic with strong negation in terms of finite rough set-based Nelson algebras determined by quasiorders. We show how for a quasiorder R, its rough set-based Nelson algebra can be obtained by applying Sendlewski’s well-known construction. We prove that if the set of all R-closed elements, which may be viewed as the set of completely defined objects, is cofinal, then the rough set-based Nelson algebra determined by the quasiorder R forms (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Variant of Thomason's First-Order Logic CF Based on Situations.Xuegang Wang & Peter Mott - 1998 - Notre Dame Journal of Formal Logic 39 (1):74-93.
    In this paper, we define a first-order logic CFʹ with strong negation and bounded static quantifiers, which is a variant of Thomason's logic CF. For the logic CFʹ, the usual Kripke formal semantics is defined based on situations, and a sound and complete axiomatic system is established based on the axiomatic systems of constructive logics with strong negation and Thomason's completeness proof techniques. With the use of bounded quantifiers, CFʹ allows the domain of quantification to be empty and allows for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modelling truthmaking.Greg Restall - 2000 - Logique Et Analyse 43 (169-170):211-230.
    According to one tradition in realist philosophy, 'truthmaking' amounts to necessitation. That is, an object x is a truthmaker for the claim A if x exists, and the existence of x necessitates the truth of A. I argued in my paper "Truthmakers, Entailment and Necessity" [14], that if we wish to use this account of truthmaking, we ought understand the entailment connective "=>" in such a claim as a relevant entailment, in the tradition of Anderson and Belnap and their co-workers (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Connexive logic.Heinrich Wansing - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Normal modal substructural logics with strong negation.Norihiro Kamide - 2003 - Journal of Philosophical Logic 32 (6):589-612.
    We introduce modal propositional substructural logics with strong negation, and prove the completeness theorems (with respect to Kripke models) for these logics.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantized linear logic, involutive quantales and strong negation.Norihiro Kamide - 2004 - Studia Logica 77 (3):355-384.
    A new logic, quantized intuitionistic linear logic, is introduced, and is closely related to the logic which corresponds to Mulvey and Pelletier's involutive quantales. Some cut-free sequent calculi with a new property quantization principle and some complete semantics such as an involutive quantale model and a quantale model are obtained for QILL. The relationship between QILL and Wansing's extended intuitionistic linear logic with strong negation is also observed using such syntactical and semantical frameworks.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The Craig interpolation theorem for prepositional logics with strong negation.Valentin Goranko - 1985 - Studia Logica 44 (3):291 - 317.
    This paper deals with, prepositional calculi with strong negation (N-logics) in which the Craig interpolation theorem holds. N-logics are defined to be axiomatic strengthenings of the intuitionistic calculus enriched with a unary connective called strong negation. There exists continuum of N-logics, but the Craig interpolation theorem holds only in 14 of them.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Logical pluralism.Jc Beall & Greg Restall - 2000 - Australasian Journal of Philosophy 78 (4):475 – 493.
    Consequence is at the heart of logic; an account of consequence, of what follows from what, offers a vital tool in the evaluation of arguments. Since philosophy itself proceeds by way of argument and inference, a clear view of what logical consequence amounts to is of central importance to the whole discipline. In this book JC Beall and Greg Restall present and defend what thay call logical pluralism, the view that there is more than one genuine deductive consequence relation, a (...)
    Download  
     
    Export citation  
     
    Bookmark   302 citations  
  • Consistency-Sensitive Epistemic Modalities in Information-Based Semantics.Vít Punčochář, Marta Bílková, Sena Bozdag & Thomas M. Ferguson - forthcoming - Studia Logica:1-39.
    The paper extends a framework of information-based semantics for intuitionistic logic with a paraconsistent negation and consistency-sensitive epistemic modalities. In this framework information states represent information collected from various sources and as such they can be inconsistent because they receive contradictory information either from a single inconsistent source or from various mutually incompatible sources. The modalities reflect only those sources that are consistent and trusted. For the paraconsistent logic generated by this framework, we present a Hilbert style system, we prove (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Very True Operators on Pre-semi-Nelson Algebras.Shokoofeh Ghorbani - forthcoming - Studia Logica:1-26.
    In this paper, we use the concept of very true operator to pre-semi-Nelson algebras and investigate the properties of very true pre-semi-Nelson algebras. We study the very true N-deductive systems and use them to establish the uniform structure on very true pre-semi-Nelson algebras. We obtain some properties of this topology. Finally, the corresponding logic very true semi-intuitionistic logic with strong negation is constructed and algebraizable of this logic is proved based on very true semi-Nelson algebras.
    Download  
     
    Export citation  
     
    Bookmark  
  • Nelson algebras, residuated lattices and rough sets: A survey.Jouni Järvinen, Sándor Radeleczki & Umberto Rivieccio - 2024 - Journal of Applied Non-Classical Logics 34 (2):368-428.
    Over the past 50 years, Nelson algebras have been extensively studied by distinguished scholars as the algebraic counterpart of Nelson's constructive logic with strong negation. Despite these studies, a comprehensive survey of the topic is currently lacking, and the theory of Nelson algebras remains largely unknown to most logicians. This paper aims to fill this gap by focussing on the essential developments in the field over the past two decades. Additionally, we explore generalisations of Nelson algebras, such as N4-lattices which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Symmetric and conflated intuitionistic logics.Norihiro Kamide - forthcoming - Logic Journal of the IGPL.
    Two new propositional non-classical logics, referred to as symmetric intuitionistic logic (SIL) and conflated intuitionistic logic (CIL), are introduced as indexed and non-indexed Gentzen-style sequent calculi. SIL is regarded as a natural hybrid logic combining intuitionistic and dual-intuitionistic logics, whereas CIL is regarded as a variant of intuitionistic paraconsistent logic with conflation and without paraconsistent negation. The cut-elimination theorems for SIL and CIL are proved. CIL is shown to be conservative over SIL.
    Download  
     
    Export citation  
     
    Bookmark  
  • Intuitionistic Modal Algebras.Sergio A. Celani & Umberto Rivieccio - 2024 - Studia Logica 112 (3):611-660.
    Recent research on algebraic models of _quasi-Nelson logic_ has brought new attention to a number of classes of algebras which result from enriching (subreducts of) Heyting algebras with a special modal operator, known in the literature as a _nucleus_. Among these various algebraic structures, for which we employ the umbrella term _intuitionistic modal algebras_, some have been studied since at least the 1970s, usually within the framework of topology and sheaf theory. Others may seem more exotic, for their primitive operations (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Executability and Connexivity in an Interpretation of Griss.Thomas M. Ferguson - 2023 - Studia Logica 112 (1):459-509.
    Although the work of G.F.C. Griss is commonly understood as a program of negationless mathematics, close examination of Griss’s work suggests a more fundamental feature is its executability, a requirement that mental constructions are possible only if corresponding mental activity can be actively carried out. Emphasizing executability reveals that Griss’s arguments against negation leave open several types of negation—including D. Nelson’s strong negation—as compatible with Griss’s intuitionism. Reinterpreting Griss’s program as one of executable mathematics, we iteratively develop a pair of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Meaning and identity of proofs in a bilateralist setting: A two-sorted typed lambda-calculus for proofs and refutations.Sara Ayhan - forthcoming - Journal of Logic and Computation.
    In this paper I will develop a lambda-term calculus, lambda-2Int, for a bi-intuitionistic logic and discuss its implications for the notions of sense and denotation of derivations in a bilateralist setting. Thus, I will use the Curry-Howard correspondence, which has been well-established between the simply typed lambda-calculus and natural deduction systems for intuitionistic logic, and apply it to a bilateralist proof system displaying two derivability relations, one for proving and one for refuting. The basis will be the natural deduction system (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fragments of quasi-Nelson: residuation.U. Rivieccio - 2023 - Journal of Applied Non-Classical Logics 33 (1):52-119.
    Quasi-Nelson logic (QNL) was recently introduced as a common generalisation of intuitionistic logic and Nelson's constructive logic with strong negation. Viewed as a substructural logic, QNL is the axiomatic extension of the Full Lambek Calculus with Exchange and Weakening by the Nelson axiom, and its algebraic counterpart is a variety of residuated lattices called quasi-Nelson algebras. Nelson's logic, in turn, may be obtained as the axiomatic extension of QNL by the double negation (or involutivity) axiom, and intuitionistic logic as the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Negation in Negationless Intuitionistic Mathematics.Thomas Macaulay Ferguson - 2023 - Philosophia Mathematica 31 (1):29-55.
    The mathematician G.F.C. Griss is known for his program of negationless intuitionistic mathematics. Although Griss’s rejection of negation is regarded as characteristic of his philosophy, this is a consequence of an executability requirement that mental constructions presuppose agents’ executing corresponding mental activity. Restoring Griss’s executability requirement to a central role permits a more subtle characterization of the rejection of negation, according to which D. Nelson’s strong constructible negation is compatible with Griss’s principles. This exposes a ‘holographic’ theory of negation in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Advances in Natural Deduction: A Celebration of Dag Prawitz's Work.Luiz Carlos Pereira & Edward Hermann Haeusler (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This collection of papers, celebrating the contributions of Swedish logician Dag Prawitz to Proof Theory, has been assembled from those presented at the Natural Deduction conference organized in Rio de Janeiro to honour his seminal research. Dag Prawitz’s work forms the basis of intuitionistic type theory and his inversion principle constitutes the foundation of most modern accounts of proof-theoretic semantics in Logic, Linguistics and Theoretical Computer Science. The range of contributions includes material on the extension of natural deduction with higher-order (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Logic programming and knowledge representation—The A-Prolog perspective.Michael Gelfond & Nicola Leone - 2002 - Artificial Intelligence 138 (1-2):3-38.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Formes, objets et négation selon Granger.Fabien Schang - 2020 - Philosophiques 47 (1):3-33.
    Il s’agit de comprendre dans cet article l’opposition formulée par Gilles-Gaston Granger entre deux types de négation : la négation « radicale », d’un côté, et les négations « appliquées » de l’autre. Nous examinerons les propriétés de cette opposition, ainsi que les enseignements à en tirer sur la philosophie de la logique de Granger. Puis nous proposerons une théorie constructive des valeurs logiques considérées comme des objets structurés, consolidant à la fois l’unité de la théorie logique de Granger et (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Nelson’s logic ????Thiago Nascimento, Umberto Rivieccio, João Marcos & Matthew Spinks - 2020 - Logic Journal of the IGPL 28 (6):1182-1206.
    Besides the better-known Nelson logic and paraconsistent Nelson logic, in 1959 David Nelson introduced, with motivations of realizability and constructibility, a logic called $\mathcal{S}$. The logic $\mathcal{S}$ was originally presented by means of a calculus with infinitely many rule schemata and no semantics. We look here at the propositional fragment of $\mathcal{S}$, showing that it is algebraizable, in the sense of Blok and Pigozzi, with respect to a variety of three-potent involutive residuated lattices. We thus introduce the first known algebraic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • HYPE: A System of Hyperintensional Logic.Hannes Leitgeb - 2019 - Journal of Philosophical Logic 48 (2):305-405.
    This article introduces, studies, and applies a new system of logic which is called ‘HYPE’. In HYPE, formulas are evaluated at states that may exhibit truth value gaps and truth value gluts. Simple and natural semantic rules for negation and the conditional operator are formulated based on an incompatibility relation and a partial fusion operation on states. The semantics is worked out in formal and philosophical detail, and a sound and complete axiomatization is provided both for the propositional and the (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Kripke Completeness of Bi-intuitionistic Multilattice Logic and its Connexive Variant.Norihiro Kamide, Yaroslav Shramko & Heinrich Wansing - 2017 - Studia Logica 105 (6):1193-1219.
    In this paper, bi-intuitionistic multilattice logic, which is a combination of multilattice logic and the bi-intuitionistic logic also known as Heyting–Brouwer logic, is introduced as a Gentzen-type sequent calculus. A Kripke semantics is developed for this logic, and the completeness theorem with respect to this semantics is proved via theorems for embedding this logic into bi-intuitionistic logic. The logic proposed is an extension of first-degree entailment logic and can be regarded as a bi-intuitionistic variant of the original classical multilattice logic (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Gentzen-Type Methods for Bilattice Negation.Norihiro Kamide - 2005 - Studia Logica 80 (2-3):265-289.
    A general Gentzen-style framework for handling both bilattice (or strong) negation and usual negation is introduced based on the characterization of negation by a modal-like operator. This framework is regarded as an extension, generalization or re- finement of not only bilattice logics and logics with strong negation, but also traditional logics including classical logic LK, classical modal logic S4 and classical linear logic CL. Cut-elimination theorems are proved for a variety of proposed sequent calculi including CLS (a conservative extension of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Belief, provability, and logic programs.José Júlio Alferes & Luís Moniz Pereira - 1995 - Journal of Applied Non-Classical Logics 5 (1):31-50.
    Download  
     
    Export citation  
     
    Bookmark  
  • A relationship between Rauszer's HB logic and Nelson's logic'.Norihiro Kamide - 2004 - Bulletin of the Section of Logic 33 (4):237-249.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Nelson's paraconsistent logics.Seiki Akama - 1999 - Logic and Logical Philosophy 7:101.
    David Nelson’s constructive logics with strong negation may beviewed as alternative paraconsistent logic. These logics have been developedbefore da Costa’s works. We address some philosophical aspects of Nelson’slogics and give technical results concerning Kripke models and tableau calculi. We also suggest possible applications of paraconsistent constructivelogics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Knowledge, Uncertainty and Ignorance in Logic: Bilattices and beyond.George Gargov - 1999 - Journal of Applied Non-Classical Logics 9 (2-3):195-283.
    ABSTRACT In the paper we present a survey of some approaches to the semantics of many-valued propositional systems. These approaches are inspired on one hand by classical problems in the investigations of logical aspects of epistemic activity: knowledge and truth, contradictions, beliefs, reliability of data, etc. On the other hand they reflect contemporary concerns of researchers in Artificial Intelligence (and Cognitive Science in general) with inferences drawn from imperfect information, even from total ignorance. We treat the mathematical apparatus that has (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)Proof-Theoretic Semantics.Peter Schroeder-Heister - forthcoming - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Cut for core logic.Neil Tennant - 2012 - Review of Symbolic Logic 5 (3):450-479.
    The motivation for Core Logic is explained. Its system of proof is set out. It is then shown that, although the system has no Cut rule, its relation of deducibility obeys Cut with epistemic gain.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Sequent calculi for some trilattice logics.Norihiro Kamide & Heinrich Wansing - 2009 - Review of Symbolic Logic 2 (2):374-395.
    The trilattice SIXTEEN3 introduced in Shramko & Wansing (2005) is a natural generalization of the famous bilattice FOUR2. Some Hilbert-style proof systems for trilattice logics related to SIXTEEN3 have recently been studied (Odintsov, 2009; Shramko & Wansing, 2005). In this paper, three sequent calculi GB, FB, and QB are presented for Odintsovs coordinate valuations associated with valuations in SIXTEEN3. The equivalence between GB, FB, and QB, the cut-elimination theorems for these calculi, and the decidability of B are proved. In addition, (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations